Constant Strain Rate (constant + strain_rate)

Distribution by Scientific Domains


Selected Abstracts


A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000
Ian G. Main
It is common practice to refer to three independent stages of creep under static loading conditions in the laboratory: namely transient, steady-state, and accelerating. Here we suggest a simple damage mechanics model for the apparently trimodal behaviour of the strain and event rate dependence, by invoking two local mechanisms of positive and negative feedback applied to constitutive rules for time-dependent subcritical crack growth. In both phases, the individual constitutive rule for measured strain , takes the form ,(t),=,,0,[1,+,t/m,]m, where , is the ratio of initial crack length to rupture velocity. For a local hardening mechanism (negative feedback), we find that transient creep dominates, with 0,<,m,<,1. Crack growth in this stage is stable and decelerating. For a local softening mechanism (positive feedback), m,<,0, and crack growth is unstable and accelerating. In this case a quasi-static instability criterion , , , can be defined at a finite failure time, resulting in the localization of damage and the formation of a throughgoing fracture. In the hybrid model, transient creep dominates in the early stages of damage and accelerating creep in the latter stages. At intermediate times the linear superposition of the two mechanisms spontaneously produces an apparent steady-state phase of relatively constant strain rate, with a power-law rheology, as observed in laboratory creep test data. The predicted acoustic emission event rates in the transient and accelerating phases are identical to the modified Omori laws for aftershocks and foreshocks, respectively, and provide a physical meaning for the empirical constants measured. At intermediate times, the event rate tends to a relatively constant background rate. The requirement for a finite event rate at the time of the main shock can be satisfied by modifying the instability criterion to having a finite crack velocity at the dynamic failure time, dx/dt , VR,, where VR is the dynamic rupture velocity. The same hybrid model can be modified to account for dynamic loading (constant stress rate) boundary conditions, and predicts the observed loading rate dependence of the breaking strength. The resulting scaling exponents imply systematically more non-linear behaviour for dynamic loading. [source]


Auxetic compliant flexible PU foams: static and dynamic properties

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2005
F. Scarpa
Abstract The paper describes the manufacturing and tensile testing of auxetic (negative Poisson's ratio) thermoplastic polyurethane foams, both under constant strain rate and sinusoidal excitation. The foams are produced from conventional flexible polyurethane basis following a manufacturing route developed in previous works. The Poisson's ratio behaviour over tensile strain has been analyzed using an Image Data processing technique based on Edge Detection from digital images recorded during quasi-static tensile test. The samples have been subjected to tensile and compressive tests at quasi-static and constant strain-rate values (up to 12 s,1). Analogous tests have been performed over iso-volumetric foams samples, i.e., foams subjected to the same volumetric compression of the auxetic ones, exhibiting a near zero Poisson's ratio behaviour. The auxetic and non-auxetic foams have been also tested under sinusoidal cycling load up to 10 Hz, with maximum pre-strain applied of 12%. The hysteresis of the cycling loading curve has been measured to determine the damping hysteretic loss factor for the various foams. The measurements indicate that auxetic foams have increased damping loss factor of 20% compared to the conventional foams. The energy dissipation is particularly relevant in the tensile segment of the curve, with effects given by the pre-strain level imposed on the samples. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Relationship between scale effect and structure levels in fibrous structures

POLYMER COMPOSITES, Issue 2 2000
Ning Pan
A series of testing samples of fibers, yarns, fabrics, and coated fabrics of the same source were prepared and then tested at constant strain rate but different gauge lengths on an Instron tester for tensile test. The results are compared to see the scale effect at different structure levels of fibrous materials. Discussions and explanations of the data are provided as well. [source]


Strain-Controlled Tensile Deformation Behavior and Relaxation Properties of Isotactic Poly(1-butene) and Its Ethylene Copolymers

MACROMOLECULAR SYMPOSIA, Issue 1 2004
Mahmoud Al-Hussein
Abstract The tensile deformation behaviour of poly(1-butene) and two of its ethylene copoloymers was studied at room temperature. This was done by investigating true stress-strain curves at constant strain rates, elastic recovery and stress relaxation properties and in-situ WAXS patterns during the deformation process. As for a series of semicrystalline polymers in previous studies, a strain-controlled deformation behaviour was found. The differential compliance, the recovery properties and the stress relaxation curves changed simultaneously at well-defined points. The strains at which these points occurred along the true stress-strain remained constant for the different samples despite their different percentage crystallinities. The well-defined way in which the different samples respond to external stresses complies with the granular substructure of the crystalline lamellae in a semicrystalline polymer. [source]