Home About us Contact | |||
Conserved Sequence Motifs (conserved + sequence_motif)
Selected AbstractsDistribution of corticotropin-releasing hormone in the developing zebrafish brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2007Gayathri Chandrasekar Abstract Corticotropin-releasing hormone (CRH) plays a central role in the physiological regulation of the hypothalamus-pituitary-adrenal/interrenal axis mediating endocrine, behavioral, autonomic, and immune responses to stress. Despite the wealth of knowledge about the physiological roles of CRH, the genetic mechanisms by which CRH neurons arise during development are poorly understood. As a first step toward analyzing the molecular and genetic pathways involved in CRH lineage specification, we describe the developmental distribution of CRH neurons in the embryonic zebrafish, a model organism for functional genomics and developmental biology. We searched available zebrafish expressed sequence tag (EST) databases for CRH-like sequences and identified one EST that contained the complete zebrafish CRH open reading frame (ORF). The CRH precursor sequence contained a signal peptide, the CRH peptide, and a cryptic peptide with a conserved sequence motif. RT-PCR analysis showed crh expression in a wide range of adult tissues as well as during embryonic and larval stages. By whole-mount in situ hybridization histochemistry, discrete crh -expressing cell clusters were found in different parts of the embryonic zebrafish brain, including telencephalon, preoptic region, hypothalamus, posterior tuberculum, thalamus, epiphysis, midbrain tegmentum, and rostral hindbrain and in the neural retina. The localization of crh mRNA within the preoptic region is consistent with the central role of CRH in the teleost stress response through activation of the hypothalamic-pituitary-interrenal axis. The widespread distribution of CRH-synthesizing cells outside the preoptic region suggests additional functions of CRH in the embryonic zebrafish brain. J. Comp. Neurol. 505:337,351, 2007. © 2007 Wiley-Liss, Inc. [source] Authentic interdomain communication in an RNA helicase reconstituted by expressed protein ligation of two helicase domainsFEBS JOURNAL, Issue 2 2007Anne R. Karow RNA helicases mediate structural rearrangements of RNA or RNA,protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis,Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication. [source] RNA-dependent RNA polymerase activity encoded by GB virus-B non-structural protein 5BJOURNAL OF VIRAL HEPATITIS, Issue 5 2000Zhong Phylogenetic analysis and polyprotein organization comparison have shown that GB virus-B (GBV-B) is closely related to hepatitis C virus (HCV). In this study, the coding region for GBV-B non-structural protein 5B (NS5B) was isolated by reverse transcription,polymerase chain reaction (RT,PCR) from pooled serum of GBV-B-infected tamarins. Expression of soluble GBV-B NS5B protein in Escherichia coli was achieved by removal of a 19-amino acid hydrophobic domain at the C-terminus of the protein. The truncated GBV-B NS5B (NS5B,CT19) was purified to homogeneity and shown to possess an RNA-dependent RNA polymerase (RdRp) activity in both gel-based and scintillation proximity assays. NS5B,CT19 required the divalent cation Mn2+ for enzymatic activity, at an optimal concentration of 15 m M. Interestingly, Mg2+, at concentrations up to 20 m M, did not support the GBV-B NS5B activity. This differs from HCV NS5B where both Mn2+ and Mg2+ can support RdRp activity. Zn2+ was found to inhibit the activity of GBV-B NS5B, with a 50% inhibitory concentration (IC50) of 5,10 ,M. Higher concentrations of monovalent salts (NaCl or KCl > 100 m M) and glycerol (> 3%) were also inhibitory. NS5B,CT19 was able to bind to RNA homopolymers, but utilized most efficiently poly(C), the one with the lowest binding affinity for RNA synthesis. Mutational analysis of GBV-B NS5B demonstrated the importance of several conserved sequence motifs for enzymatic activity. Based on sequence homology (, 37% identity and 52% similarity) between GBV-B and HCV NS5B proteins, the active GBV-B RdRp provides a good surrogate assay system for HCV polymerase studies. [source] Sequence-structure analysis of FAD-containing proteinsPROTEIN SCIENCE, Issue 9 2001Orly Dym We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p -cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein ,pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands. [source] The structure of the genomic Bacillus subtilis dUTPase: novel features in the Phe-lidACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2010Javier García-Nafría dUTPases are a ubiquitous family of enzymes that are essential for all organisms and catalyse the breakdown of 2-deoxyuridine triphosphate (dUTP). In Bacillus subtilis there are two homotrimeric dUTPases: a genomic and a prophage form. Here, the structures of the genomic dUTPase and of its complex with the substrate analogue dUpNHpp and calcium are described, both at 1.85,Å resolution. The overall fold resembles that of previously solved trimeric dUTPases. The C-terminus, which contains one of the conserved sequence motifs, is disordered in both structures. The crystal of the complex contains six independent protomers which accommodate six dUpNHpp molecules, with three triphosphates in the trans conformation and the other three in the active gauche conformation. The structure of the complex confirms the role of several key residues that are involved in ligand binding and the position of the catalytic water. Asp82, which has previously been proposed to act as a general base, points away from the active site. In the complex Ser64 reorients in order to hydrogen bond the phosphate chain of the substrate. A novel feature has been identified: the position in the sequence of the `Phe-lid', which packs against the uracil moiety, is adjacent to motif III, whereas in all other dUTPase structures the lid is in a conserved position in motif V of the flexible C-terminal arm. This requires a reconsideration of some aspects of the accepted mechanism. [source] |