Home About us Contact | |||
Conserved Motif (conserved + motif)
Selected AbstractsDifferential expression of antenna and core genes in Prochlorococcus PCC 9511 (Oxyphotobacteria) grown under a modulated light,dark cycleENVIRONMENTAL MICROBIOLOGY, Issue 3 2001Laurence Garczarek The continuous changes in incident solar light occurring during the day oblige oxyphototrophs, such as the marine prokaryote Prochlorococcus, to modulate the synthesis and degradation rates of their photosynthetic components finely. How this natural phenomenon influences the diel expression of photosynthetic genes has never been studied in this ecologically important oxyphotobacterium. Here, the high light-adapted strain Prochlorococcus sp. PCC 9511 was grown in large-volume continuous culture under a modulated 12 h,12 h light,dark cycle mimicking the conditions found in the upper layer of equatorial oceans. The pcbA gene encoding the major light-harvesting complex showed strong diel variations in transcript levels with two maxima, one before the onset of illumination and the other near the end of the photoperiod. In contrast, the mRNA level of psbA (encoding the reaction centre II subunit D1), the monocistronic transcript of psbD (encoding D2) and the dicistronic transcript of psbDC were all tightly correlated with light irradiance, with a minimum at night and a maximum at noon. The occurrence of a second peak during the dark period for the monocistronic transcript of psbC (encoding one of the PS II core Chl a antenna proteins) suggested the involvement of post-transcriptional regulation. Differential expression of the external antenna and core genes may constitute a mechanism of regulation of the antenna size to cope with the excess photon fluxes that Prochlorococcus cells experience in the upper layer of oceans around midday. The 5, ends of all transcripts were mapped, and a conserved motif, 5,-TTGATGA-3,, was identified within the putative psbA and pcbA promoters. [source] The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant allelesGENES TO CELLS, Issue 8 2002Wataru Sakamoto Background: A leaf-variegated mutation var1 of Arabidopsis results in the development of abnormal plastids and the formation of a green/white sector. Genetic analysis of the var1 mutant indicated that it acts synergistically with another mutation var2, suggesting that the two genes are relevant. The VAR2 locus has been shown to encode a chloroplastic FtsH, an ATP-dependent protease which is possibly involved in the degradation of thylakoid proteins and plastid development. Results: In this study we show that the VAR1 locus encodes a chloroplastic FtsH protein homologous to VAR2. VAR1 contains a conserved motif for ATPase and a metalloprotease characteristic to FtsH proteins, and is targeted into chloroplasts. A VAR1-fusion protein synthesized in vitro exhibited ATPase activity and partial metalloprotease activity. The maximum yield of photochemistry, measured by chlorophyll fluorescence, showed that the var1 mutants were sensitive to photoinhibitory light exposure at 800 µmol/m2/s. Conclusion:VAR1 and VAR2 comprise an FtsH small gene family together with other FtsH genes in Arabidopsis. VAR1 as well as VAR2 may play an important role in degrading photodamaged subunits in photosystem II. Loss of VAR1 and VAR2 perhaps impairs the photoprotection mechanism and thylakoid development, causing leaf variegation as a consequence. [source] LIV-1 Breast Cancer Protein Belongs to New Family of Histidine-Rich Membrane Proteins with Potential to Control Intracellular Zn2+ HomeostasisIUBMB LIFE, Issue 4 2000K. M. Taylor Abstract Investigation of the protein product of the oestrogen-regulated gene LIV-1, implicated in metastatic breast cancer, has revealed 10 protein sequences of unknown function that belong to a new family with potential to control intracellular Zn2+ homeostasis. Sequence alignment highlights the similarity in transmembrane domains and extramembrane charged residues, indicating potential ion-transport ability. This family has a novel highly conserved motif of 66 residues, including a transmembrane domain and a catalytic zinc-binding sequence of zinc metalloproteases, containing conserved (indicated in bold type) proline and glutamine residues, HEXPHEXGD. These proteins contain more plentiful histidine-rich repeats than zinc transporters, suggesting an ability to bind or transport zinc across membranes. I propose that these 11 proteins form a new family with the potential to control intracellular Zn2+ homeostasis. [source] Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and ,1 integrin in the central nervous systemJOURNAL OF NEUROCHEMISTRY, Issue 2 2003Natalia Denisenko-Nehrbass Abstract Caspr/paranodin is an essential neuronal component of paranodal axoglial junctions, associated with contactin/F3. Its short intracellular domain contains a conserved motif (GNP motif) capable of binding protein 4.1 domains [FERM domains (four point one, ezrin, radixin, moesin)]. Schwannomin/merlin is a tumour suppressor expressed in many cell types, including in neurons, the function and partners of which are still poorly characterized. We show that the FERM domain of schwannomin binds to the paranodin GNP motif in glutathione S-transferase (GST)-pull down assays and in transfected COS-7 cells. The two proteins co-immunoprecipitated in brain extracts. In addition, paranodin and schwannomin were associated with integrin ,1 in transfected cells and in brain homogenates. The presence of paranodin increased the association between integrin ,1 and schwannomin or its N-terminal domain, suggesting that the interactions between these proteins are interdependent. In jimpy mutant mice, which display a severe dysmyelination with deficient paranodal junctions, the interactions between paranodin, schwannomin and integrin ,1 were profoundly altered. Our results show that schwannomin and integrin ,1 can be associated with paranodin in the central nervous system. Since integrin ,1 and schwannomin do not appear to be enriched in paranodes they may be quantitatively minor partners of paranodin in these regions and/or be associated with paranodin at other locations. [source] A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substratesTHE PLANT JOURNAL, Issue 1 2008Florina Vlad Summary Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants. [source] The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamianaTHE PLANT JOURNAL, Issue 2 2006Jorunn I. B. Bos Summary The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a,R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure,function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions. [source] Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastidsTHE PLANT JOURNAL, Issue 2 2005Oliver Kilian Summary Several groups of algae evolved by secondary endocytobiosis, which is defined as the uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history such algae possess plastids that are surrounded by either three or four membranes. Protein targeting into plastids of these organisms depends on N-terminal bipartite presequences consisting of a signal and a transit peptide domain. This suggests that different protein targeting systems may have been combined during establishment of secondary endocytobiosis to enable the transport of proteins into the plastids. Here we demonstrate the presence of an apparently new type of transport into diatom plastids. We analyzed protein targeting into the plastids of diatoms and identified a conserved amino acid sequence motif within plastid preprotein targeting sequences. We expressed several diatom plastid presequence:GFP fusion proteins with or without modifications within that motif in the diatom Phaeodactylum tricornutum and found that a single conserved phenylalanine is crucial for protein transport into the diatom plastids in vivo, thus indicating the presence of a so far unknown new type of targeting signal. We also provide experimental data about the minimal requirements of a diatom plastid targeting presequence and demonstrate that the signal peptides of plastid preproteins and of endoplasmic reticulum-targeted preproteins in diatoms are functionally equivalent. Furthermore we show that treatment of the cells with Brefeldin A arrests protein transport into the diatom plastids suggesting that a vesicular transport step within the plastid membranes may occur. [source] Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in ArabidopsisTHE PLANT JOURNAL, Issue 2 2003Yafan Huang Summary CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1,8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1,8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway. [source] Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates matrix metalloproteinases, and enhances apoptosis of articular cartilage chondrocytesARTHRITIS & RHEUMATISM, Issue 3 2010Sophie Rösler Objective Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a member of a family of protease-resistant peptides containing a highly conserved motif with 6 cysteine residues. Recent studies have shown that TFF3 is expressed in injured cornea, where it plays a role in corneal wound healing, but not in healthy cornea. Since cartilage and cornea have similar matrix properties, we undertook the present study to investigate whether TFF3 could induce anabolic functions in diseased articular cartilage. Methods We used reverse transcriptase,polymerase chain reaction, Western blot analysis, and immunohistochemistry to measure the expression of TFF3 in healthy articular cartilage, osteoarthritis (OA),affected articular cartilage, and septic arthritis,affected articular cartilage and to assess the effects of cytokines, bacterial products, and bacterial supernatants on TFF3 production. The effects of TFF3 on matrix metalloproteinase (MMP) production were measured by enzyme-linked immunosorbent assay, and effects on chondrocyte apoptosis were studied by caspase assay and annexin V assay. Results Trefoil factors were not expressed in healthy human articular cartilage, but expression of TFF3 was highly up-regulated in the cartilage of patients with OA. These findings were confirmed in animal models of OA and septic arthritis, as well as in tumor necrosis factor ,, and interleukin-1,,treated primary human articular chondrocytes, revealing induction of Tff3/TFF3 under inflammatory conditions. Application of the recombinant TFF3 protein to cultured chondrocytes resulted in increased production of cartilage-degrading MMPs and increased chondrocyte apoptosis. Conclusion In this study using articular cartilage as a model, we demonstrated that TFF3 supports catabolic functions in diseased articular cartilage. These findings widen our knowledge of the functional spectrum of TFF peptides and demonstrate that TFF3 is a multifunctional trefoil factor with the ability to link inflammation with tissue remodeling processes in articular cartilage. Moreover, our data suggest that TFF3 is a factor in the pathogenesis of OA and septic arthritis. [source] Analysis of conserved residues in the ,pat-3 cytoplasmic tail reveals important functions of integrin in multiple tissuesDEVELOPMENTAL DYNAMICS, Issue 3 2010Xiaojian Xu Abstract Integrin cytoplasmic tails contain motifs that link extracellular information to cell behavior such as cell migration and contraction. To investigate the cell functions mediated by the conserved motifs, we created mutations in the Caenorhabditis elegans ,pat-3 cytoplasmic tail. The ,1D (799FK800), NPXY, tryptophan (784W), and threonine (797TT798) motifs were disrupted to identify their functions in vivo. Animals expressing integrins with disrupted NPXY motifs were viable, but displayed distal tip cell migration and ovulation defects. The conserved threonines were required for gonad migration and contraction as well as tail morphogenesis, whereas disruption of the ,1D and tryptophan motifs produced only mild defects. To abolish multiple conserved motifs, a ,1C-like variant, which results in a frameshift, was constructed. The ,pat-3(,1C) transgenic animals showed cold-sensitive larval arrests and defective muscle structure and gonad migration and contraction. Our study suggests that the conserved NPXY and TT motifs play important roles in the tissue-specific function of integrin. Developmental Dynamics 239:763,772, 2010. © 2010 Wiley-Liss, Inc. [source] The potential for Toll-like receptors to collaborate with other innate immune receptorsIMMUNOLOGY, Issue 4 2004Subhankar Mukhopadhyay Summary Cells of the innate immune system express a large repertoire of germ-line encoded cell-surface glycoprotein receptors including Toll-like receptors (TLRs). TLRs recognize conserved motifs on microbes and induce inflammatory signals. Evidence suggests that individual members of the TLR family or other non-TLR surface antigens either physically or functionally interact with each other and cumulative effects of these interactions instruct the nature and outcome of the immune response to a particular pathogen. [source] New ovine PrP gene haplotypes as a result of single nucleotide polymorphisms in the PrP gene promoterJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 2 2005G.T. O'Neill Summary Incidence of scrapie in sheep is strongly associated with PrP gene amino acid codon variants at positions 136, 154 and 171. However, there are breed differences in disease linkage and anomalous disease patterns which cannot obviously be explained by the ,3 codon' genotype. Mouse studies indicate that PrP protein levels can influence scrapie disease progression and this prompted us to study the sheep PrP gene promoter region in a search for novel polymorphisms which may influence gene expression and hence disease susceptibility. The incidence of three single nucleotide polymorphisms (SNP) at positions C/A-5354, T/C-5382 and C/G-5622 within the PrP gene promoter region was determined from Neuropathogenesis Unit (NPU) and New Zealand (NZ) Cheviot and UK and NZ Suffolk sheep. The SNP variants A-5354 and G-5622 created consensus sequences for STAT and SP1 transcription factors, respectively, and C-5382 was within Motif 1, one of four conserved motifs found within the promoter region of mammalian PrP genes. The occurrence of C/A-5354 and T/C-5384 SNP exhibited differential associations with the PrP open reading frame (ORF) variants linked to scrapie susceptibility. A significant imbalance in the incidence of the C-5354/AXQ haplotype was found in the NPU Cheviot flock. C-5382 was not found in Suffolk sheep of either UK or NZ origin. The G-5622 SNP was found at a lower incidence in Suffolk sheep compared with Cheviots. The range of transcription factor binding motif profiles in the PrP gene promoter may act to modulate PrP gene activity and warrants further large-scale study. [source] Cloning, sequencing, and characterization of CYP1A1 cDNA from leaping mullet (Liza Saliens) liver and implications for the potential functions of its conserved amino acidsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2001Alaattin Sen Abstract A 2,037 bp CYP1A1 cDNA (GenBank AF072899) was cloned through screening of a ,ZipLox cDNA library constructed from the liver of a leaping mullet (Liza saliens) fish captured from Izmir Bay on the Aegean coast of Turkey using rainbow trout CYP1A1 cDNA as a probe. This clone has a 130 bp 5'-flanking region, a 1,563 bp open reading frame (ORF) encoding a 521-amino acid protein (58,972 Da), and a 344 bp 3'-untranslated region without a poly (A) tail. Alignment of the deduced amino acids of CYP1A1 cDNAs showed 58% and 69,96% identities with human and 12 other fish species, respectively. Southern blot analysis suggested that this CYP1A1 cDNA was from a single-copy gene. Based on the comparison with CYP1A1 genes reported for fish and mammals, the leaping mullet CYP1A1 gene is probably split into 7 exons. The intron insertion sites were predicted. Alignment of the CYP1A1 cDNA encoded amino acids from 13 fish and 7 mammalian species disclosed differences in highly conserved amino acids between aquatic and land vertebrates. The possible associated secondary structure; conserved motifs and substrate-binding sites were discussed. The phylogenetic relationships of CYP1A1s among 13 fish species were analyzed by a distance method. © 2001 John Wiley & Sons, Inc. J Biochem Mol Toxicol 15:243,255, 2001 [source] CxxS: Fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase functionPROTEIN SCIENCE, Issue 10 2002Dmitri E. Fomenko Abstract Redox reactions involving thiol groups in proteins are major participants in cellular redox regulation and antioxidant defense. Although mechanistically similar, thiol-dependent redox processes are catalyzed by structurally distinct families of enzymes, which are difficult to identify by available protein function prediction programs. Herein, we identified a functional motif, CxxS (cysteine separated from serine by two other residues), that was often conserved in redox enzymes, but rarely in other proteins. Analyses of complete Escherichia coli, Campylobacter jejuni, Methanococcus jannaschii, and Saccharomyces cerevisiae genomes revealed a high proportion of proteins known to use the CxxS motif for redox function. This allowed us to make predictions in regard to redox function and identity of redox groups for several proteins whose function previously was not known. Many proteins containing the CxxS motif had a thioredoxin fold, but other structural folds were also present, and CxxS was often located in these proteins upstream of an ,-helix. Thus, a conserved CxxS sequence followed by an ,-helix is typically indicative of a redox function and corresponds to thiol-dependent redox sites in proteins. The data also indicate a general approach of genome-wide identification of redox proteins by searching for simple conserved motifs within secondary structure patterns. [source] Basic characterization of 90 kDa heat shock protein genes HSP90AA1, HSP90AB1, HSP90B1 and TRAP1 expressed in Japanese quail (Coturnix japonica)ANIMAL SCIENCE JOURNAL, Issue 4 2010Kohji NAGAHORI ABSTRACT In the current study, we describe four novel members of the 90 kDa heat shock protein (HSP90) family expressed in Japanese quail, Coturnix japonica. The coding regions of the genes, CjHSP90AA1, CjHSP90AB1, CjHSP90B1 and CjTRAP1, exhibited more than 94% similarity to their related genes in chicken. The putative proteins encoded by these quail genes contained motifs considered essential for HSP90 gene function. In addition, the predicted proteins were more similar to HSP90AA1, HSP90AB1, HSP90B1 and TRAP1 proteins expressed in vertebrates than they were to other members of the HSP90 family. Exon numbers of CjHSP90AA1 (11), CjHSP90AB1 (12) or CjTRAP1 (18) are the same as the chicken and mammalian orthologs. Furthermore, gene order in the regions surrounding CjHSP90AB1 and CjTRAP1 has been preserved, providing evidence that the genomic regions were orthologous to HSP90-containing regions in the chicken genome. The promoter regions of the genes also contained conserved motifs identified in related genes of chicken. However, the nucleotide sequences of the 5,-flanking region of these genes were highly polymorphic. We also found that CjHSP90AA1 exhibited a robust response to heat shock treatment. Taken together, the data suggest that CjHSP90AA1, CjHSP90AB1, CjHSP90B1 and CjTRAP1 encode orthologs of HSP90AA1, HSP90AB1, HSP90B1 and TRAP1, respectively. [source] Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorumANNALS OF APPLIED BIOLOGY, Issue 1 2000L F SALAZAR Summary Sporadic outbreaks of potato yellow vein disease (PYVD) were first observed in the early 1940's by potato growers in Antioquia, Colombia. Long known to be transmitted by the greenhouse whitefly (Trialeurodes vaporariorum), the precise identity of its causal agent (presumably viral in nature) has remained obscure. Here, we present evidence that a closterovirus with a bipartite genome, potato yellow vein virus (PYVV), is associated with PYVD. Electrophoretic analysis revealed that diseased tissue contains 4,5 disease-specific dsRNAs ranging in size from c. 9 000,1 800 bp. RT-PCR reactions containing pairs of degenerate primers directed against conserved motifs in the closterovirus heat-shock protein homologue produced products of the expected sizes. Comparison of the corresponding amino acid sequences revealed striking similarities between PYVV and two bipartite, whitefly-transmitted criniviruses, Cucurbit yellow stunting disorder and Tomato chlorosis viruses. Epidemiological surveys carried out in Rionegro, Colombia identified Polygonum mepalense, Polygonum spp., Rumex obtusifolium, Tagetes spp., and Catharanthus roseus as potential viral reservoirs. PYVV is transmitted through tubers, and visual symptoms alone cannot be used to determine infection status. A sensitive hybridisation-based assay for PYVV has been developed for use in seed certification programmes. [source] Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysisCLADISTICS, Issue 2 2008Michael J. Bayly Pseudogenes from the 18S,5.8S,26S cistron of nuclear ribosomal DNA are reported in the eucalypt group (Myrtaceae), which includes seven genera. Putative pseudogenes are identified by a range of sequence comparisons including: the number of CpG and CpNpG methylation sites, GC content, estimated secondary structure stability of internal transcribed spacer transcripts, the presence of conserved motifs, patterns of sequence relationships and inferred substitution patterns. These comparisons indicate that pseudogenes are widespread, being evident in Eucalyptus (subgenera Eucalyptus and Eudesmia), Corymbia (extracodical sections Rufaria, Ochraria and Blakearia), Angophora, Stockwellia quadrifida and Arillastrum gummiferum. At least six sequences used in previous phylogenetic studies are identified as pseudogenes, and a further 10 pseudogenes are newly sequenced here. Gene trees place pseudogenes in a number of distinct lineages: pseudogenes from Eucalyptus group with other Eucalyptus sequences, those from Corymbia and Angophora group with other Corymbia/Angophora sequences, that from Stockwellia groups with other sequences from the Eucalyptopsis group, and that from Arillastrum is placed as sister to the other included sequence of Arillastrum. Some pseudogenes in Eucalyptus, Corymbia and Angophora represent "deep" ribosomal DNA paralogues that pre-date species differentiation in these groups, and a recombination analysis shows no evidence of recombination between putative pseudogenes and their functional counterparts. The presence of divergent paralogues presents both challenges and opportunities for the reconstruction of eucalypt phylogenies using ribosomal DNA sequences. Phylogenetic data sets should include only orthologous sequences, but different paralogues potentially provide additional, independent, character sets for phylogenetic analyses. © The Willi Hennig Society 2007. [source] |