Home About us Contact | |||
Conserved C-terminal Domain (conserved + c-terminal_domain)
Selected AbstractsConserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N -acetylhexosamine-1-phosphate transferase familyFEMS MICROBIOLOGY LETTERS, Issue 2 2000Matt S. Anderson Abstract WecA, MraY and WbcO are conserved members of the polyprenol phosphate:N -acetylhexosamine-1-phosphate transferase family involved in the assembly of bacterial cell walls, and catalyze reactions involving a membrane-associated polyprenol phosphate acceptor substrate and a cytoplasmically located UDP- D -amino sugar donor. MraY, WbcO and WecA purportedly utilize different UDP-sugars, although the molecular basis of this specificity is largely unknown. However, domain variations involved in specificity are predicted to occur on the cytoplasmic side of the membrane, adjacent to conserved domains involved in the mechanistic activity, and with access to the cytoplasmically located sugar nucleotides. Conserved C-terminal domains have been identified that satisfy these criteria. Topological analyses indicate that they form the highly basic, fifth cytoplasmic loop between transmembrane regions IX and X. Four diverse loops are apparent, for MraY, WecA, WbcO and RgpG, that uniquely characterize these sub-groups of the transferase family, and a correlation is evident with the known or implied UDP-sugar specificity. [source] N-terminal extension of Saccharomyces cerevisiae translation termination factor eRF3 influences the suppression efficiency of sup35 mutationsFEMS YEAST RESEARCH, Issue 3 2007Kirill Volkov Abstract The eukaryotic translation termination factor eRF3 stimulates release of nascent polypeptides from the ribosome in a GTP-dependent manner. In most eukaryotes studied, eRF3 consists of an essential, conserved C-terminal domain and a nonessential, nonconserved N-terminal extension. However, in some species, this extension is required for efficient termination. Our data show that the N-terminal extension of Saccharomyces cerevisiae eRF3 also participates in regulation of termination efficiency, but acts as a negative factor, increasing nonsense suppression efficiency in sup35 mutants containing amino acid substitutions in the C-terminal domain of the protein. [source] Structure of the C-terminal domain of nsp4 from feline coronavirusACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2009Ioannis Manolaridis Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26,31,kb) encodes 15,16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication,transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (,100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8,Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly ,-helical content displaying a unique fold that could be engaged in protein,protein interactions. [source] Analysis of the autoimmune epitopes on human testicular NASP using recombinant and synthetic peptidesCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2000I. N. Batova The human nuclear autoantigenic sperm protein, NASP, is a testicular histone-binding protein of 787 amino acids to which most vasectomized men develop autoantibodies. In this study to define the boundaries of antigenic regions and epitope recognition pattern, recombinant deletion mutants spanning the entire protein coding sequence and a human NASP cDNA sublibrary were screened with vasectomy patients' sera. Employing panel sera from 21 vasectomy patients with anti-sperm antibodies, a heterogeneous pattern of autoantibody binding to the recombinant polypeptides was detected in ELISA and immunoblotting. The majority of sera (20/21) had antibodies to one or more of the NASP fusion proteins. Antigenic sites preferentially recognized by the individual patients' sera were located within aa 32,352 and aa 572,787. Using a patient's serum selected for its reactivity to the whole recombinant protein in Western blots, cDNA clones positive for the C-terminal domain of the molecule were identified. The number and location of linear epitopes in this region were determined by synthetic peptide mapping and inhibition studies. The epitope-containing segment was delimited to the sequence aa 619,692 and analysis of a series of 74 concurrent overlapping 9mer synthetic peptides encompassing this region revealed four linear epitopes: amino acid residues IREKIEDAK (aa 648,656), KESQRSGNV (aa 656,664), AELALKATL (aa 665,673) and GFTPGGGGS (aa 680,688). All individual patients' sera reacted with epitopes within the sequence IRE,.GGS (aa 648,688). The strongest reactivity was displayed by peptides corresponding to the sequence AELALKATL (aa 665,673). Thus, multiple continuous autoimmune epitopes in NASP involving sequences in the conserved C-terminal domain as well as in the less conserved testis-specific N-terminal region comprising the histone-binding sites, as predicted for an antigen-driven immune response, may be a target of autoantibodies in vasectomized men and may provide a relevant laboratory variable to describe more accurately the spectrum of autoantibody specificities associated with the clinical manifestation of vasectomy. [source] |