Action Potentials (action + potential)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Action Potentials

  • cardiac action potential
  • compound action potential
  • compound muscle action potential
  • monophasic action potential
  • motor unit action potential
  • muscle action potential
  • nerve action potential
  • optical action potential
  • sensory action potential
  • sensory nerve action potential
  • single action potential
  • spontaneous action potential
  • unit action potential
  • ventricular action potential

  • Terms modified by Action Potentials

  • action potential amplitude
  • action potential duration
  • action potential firing
  • action potential frequency
  • action potential generation
  • action potential propagation
  • action potential recording
  • action potential repolarization

  • Selected Abstracts


    Surface Action Potential and Contractile Properties of the Human Triceps Surae Muscle: Effect of ,Dry' Water Immersion

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2002
    Yuri A. Koryak
    The effects of 7 days of ,dry' water immersion were investigated in six subjects. Changes in the contraction properties were studied in the triceps surae muscle. After immersion, the maximal voluntary contraction (MVC) was reduced by 18.9% (P < 0.01), and the electrically evoked (150 impulses s,1) maximal tension during tetanic contraction (Po) was reduced by 8.2% (P > 0.05). The difference between Po and MVC expressed as a percentage of Po and referred to as force deficiency was also calculated. The force deficiency increased by 44.1% (P < 0.001) after immersion. The decrease in Po was associated with increased maximal rates of tension development (7.2%) and relaxation. The twitch time-to-peak was not significantly changed, and half-relaxation and total contraction time were decreased by 5.3% and 2.8%, respectively, but the twitch tension (Pt) was not significantly changed and the Pt/Po ratio was decreased by 8.7%. The 60 s intermittent contractions (50 impulses s,1) decreased tetanic force to 57% (P < 0.05) of initial values, but force reduction was not significantly different in the two fatigue-inducing tests: fatigue index (the mean loss of force of the last five contractions, expressed as a percentage of the mean value of the first five contractions) was 36.2 ± 5.4% vs. 38.6 ± 2.8%, respectively (P > 0.05). While identical force reduction was present in the two fatigue-inducing tests, it would appear that concomitant electrical failure was considerably different. Comparison of the electrical and mechanical alterations recorded during voluntary contractions, and in contractions evoked by electrical stimulation of the motor nerve, suggests that immersion not only modifies the peripheral processes associated with contraction, but also changes central and/or neural command of the contraction. At peripheral sites, it is proposed that the intracellular processes of contraction play a role in the contractile impairment recorded during immersion. [source]


    Beta-Adrenergic Stimulation of Pig Myocytes with Decreased Cytosolic Free Magnesium Prolongs the Action Potential and Enhances Triggered Activity

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2002
    SHAO-KUI WEI M.D.
    Beta-Adrenergic Stimulation and Repolarization.Introduction: Heart failure results in chronic beta-adrenergic stimulation, repolarization lability, and arrhythmias associated with early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs). Having described a significant reduction in intracellular free magnesium ([Mg2+]i) in experimental heart failure, we asked whether a reduction in [Mg2+]i would delay repolarization or facilitate EADs and/or DADs. Methods and Results: Left ventricular myocytes were isolated from Yorkshire swine. Cytosolic free [Mg2+] was set at 0.12 mM (LoMg) or 1.2 mM (HiMg) through pipette dialysis. Action potentials (AP), Ca current (ICa), and sodium/calcium exchange current (INCX) were measured in the presence or absence of isoproterenol (2 ,M) at 37°C. Under basal conditions (0.1-Hz stimulation, 2 mM external [Ca2+]), reducing [Mg2+]i had no effect on AP duration and ICa but did significantly enhance INCX. In contrast, during superfusion with isoproterenol, reduced [Mg2+]i caused a significant increase in AP duration at both 50% and 90% repolarization (APD50 and APD90) compared with HiMg (P < 0.05). LoMg cells manifested a high incidence of triggered activities, including spontaneous AP, EADs, and DADs (83.3% in LoMg, n = 12 vs 38.3% in HiMg, n = 13; P < 0.05). ICa and INCX were significantly increased in LoMg cells compared with HiMg cells (P < 0.05). Conclusion: Decreased cytosolic free magnesium prolongs AP duration and increases the incidence of triggered activity during beta-adrenergic stimulation. These effects may be due to increased ICa and INCX in the presence of reduced intracellular [Mg2+]. A magnesium-dependent increase in triggered activity coupled with delayed repolarization during beta-adrenergic stimulation could contribute to the arrhythmogenic substrate in heart failure. [source]


    Atrial Fibrillation in the Goat Induces Changes in Monophasic Action Potential and mRNA Expression of Ion Channels Involved in Repolarization

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2000
    HUUB M.W. VAN DER VELDEN PH.D.
    MAP Changes and Ion Channel Expression in Goat AF. Introduction: Sustained atrial fibrillation (AF) is characterized by a marked shortening of the atrial effective refractory period (AKRP) and a decrease or reversal of its physiolonic adaptation to heart rate. The aim of the present study was to investigate whether the AF-induced changes in AKKP in the goat are associated with changes in the atrial monophasic action potential (MAP) and whether an abnormal expression of specific ion channels underlies such changes. Methods and Results: Following thoracotomy, MAPs were recorded from the free wall of the right atrium hoth before induction of AF (control) and after cardioversion of sustained AF (>2 months) in chronically instrumented goats. In control goats. MAP duration at 80% repolarization (MAPD80) shortened (P < 0.01) from 132 ± 4 msec during slow pacing (400-msec interval) to 86 ± 10 msec during fast pacing (180 msec). After cardioversion of sustained AF, the MAPD80, during slow pacing was as short as 67 ± 5 msec (electrical remodeling). Increasing the pacing rate resulted in prolongation (P = 0.02) of the MAPD80 to 91 ± 6 msec. Also. MAPD20 (20% repolarization) shortened (P = 0.05) from 32 ± 4 msec (400 msec) to 14 ± 7 msec (180 msec) in the control goats, whereas it prolonged (P = 0.03) from 20 ± 3 msec (400 msec) to 33 ± 5 msec (180 msec) in sustained AF, mRNA expression of the L-type Ca2+ channel ,1c gene and Kv1.5 potassium channel gene, which underlie Ica, and Ikur respectively, was reduced in sustained.AF compared with sinus rhythm hy 32% (P = 0.01) and 45% (P < 0.01). respectively. No significant changes were found in the mRNA levels of the rapid Na+ channel, the Na+/Ca2+ exchanger, or the Kv4.2/4.3 channels responsible for I10. Conclusion: AF-induced electrical remodeling in the goat comprises shortening of MAPD and reversal of its physiologic rate adaptation. Changes in the time course of reploarization of the action potential are associated with changes in mRNA expression of the , subunit genes of the L.-type Ca2+ channel and the Kvl.5 potassium channel. [source]


    Role of Ca2+ -Activated Cl, Current in Ventricular Action Potentials of Sheep During Adrenoceptor Stimulation

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2001
    Arie O. Verkerk
    Adrenoceptor stimulation enhances repolarising and depolarising membrane currents to different extents in cardiac myocytes. We investigated the opposing effects of the repolarising Ca2+ -activated Cl, current (ICl(Ca)) and depolarising L-type Ca2+ current (ICa,L) on the action potential configuration of sheep ventricular myocytes stimulated with noradrenaline. Whole-cell current-clamp recordings revealed that noradrenaline accelerated and prolonged phase-1 repolarisation. We define the minimal potential at the end of phase-1 repolarisation as ,notch level'. Noradrenaline (1 ,M) caused the notch level to fall from 14 ± 2.6 to 7.8 ± 2.8 mV (n= 24), but left action potential duration, resting membrane potential or action potential amplitude unaffected. Whole-cell voltage-clamp recordings showed that 1 ,M noradrenaline increased both ICa,L and ICl(Ca), but it had no significant effect on the principal K+ currents. Blockage of ICl(Ca) by 0.5 mM 4,4,-diisothiocyanatostilbene-2,2,-disulphonic acid (DIDS) in both the absence and the presence of noradrenaline abolished phase-1 repolarisation. In the presence of noradrenaline, DIDS caused elevation of the plateau phase amplitude and an increase in the action potential duration. In conclusion, elevation of the plateau phase amplitude and action potential prolongation associated with an increased ICa,L upon adrenoceptor stimulation is prevented by an increased ICl(Ca) in sheep ventricular myocytes. [source]


    Engineering physiologically controlled pacemaker cells with lentiviral HCN4 gene transfer

    THE JOURNAL OF GENE MEDICINE, Issue 5 2008
    Gerard J. J. Boink
    Abstract Background Research on biological pacemakers for the heart has so far mainly focused on short-term gene and cell therapies. To develop a clinically relevant biological pacemaker, long-term function and incorporation of autonomic modulation are crucial. Lentiviral vectors can mediate long-term gene expression, while isoform 4 of the Hyperpolarization-activated Cyclic Nucleotide-gated channel (encoded by HCN4) contributes to pacemaker function and responds maximally to cAMP, the second messenger in autonomic modulation. Material and Methods Action potential (AP) properties and pacemaker current (If) were studied in single neonatal rat ventricular myocytes that overexpressed HCN4 after lentiviral gene transduction. Autonomic responsiveness and cycle length stability were studied using extracellular electrograms of confluent cultured monolayers. Results Perforated patch-clamp experiments demonstrated that HCN4-transduced single cardiac myocytes exhibited a 10-fold higher If than non-transduced single myocytes, along with slow diastolic depolarization, comparable to pacemaker cells of the sinoatrial node, the dominant native pacemaker. HCN4-transduced monolayers exhibited a 47% increase in beating rate, compared to controls. Upon addition of DBcAMP, HCN4-transduced monolayers had beating rates which were 54% faster than baseline and significantly more regular than controls. Conclusions Lentiviral vectors efficiently transduce cardiac myocytes and mediate functional gene expression. Because HCN4-transduced myocytes demonstrate an increase in spontaneous beating rate and responsiveness to autonomic modulation, this approach may be useful to create a biological pacemaker. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Model study of time-dependent muscle response to pulsed electrical stimulation

    BIOELECTROMAGNETICS, Issue 5 2010
    Ravindra P. Joshi
    Abstract A systems-level model analysis of neuromuscular response to external electrical stimulation is presented. Action potential (AP) generation, dynamics of voltage-based calcium release at the motor endplates controlled by the arrival of APs, and muscle force production are all comprehensively included. Numerical predictions exhibit trends that are qualitatively similar to measurements of muscle response in rats from a burst of cortical stimulation and a nanosecond impulse. Modulation of neural membrane conductances (including possible electroporation) that alters the neural impulse generation frequency is hypothesized as a possible mechanism leading to observed changes in muscle force production. Other possibilities such as calcium release at nerve end endings also exist. It is also proposed that multipulsing strategies and changing the electric field direction by using multielectrode systems would be useful. Bioelectromagnetics 31:361,370, 2010. © 2010 Wiley-Liss, Inc. [source]


    SK channels and the varieties of slow after-hyperpolarizations in neurons

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2003
    Fivos Vogalis
    Abstract Action potentials and associated Ca2+ influx can be followed by slow after-hyperpolarizations (sAHPs) caused by a voltage-insensitive, Ca2+ -dependent K+ current. Slow AHPs are a widespread phenomenon in mammalian (including human) neurons and are present in both peripheral and central nervous systems. Although, the molecular identity of ion channels responsible for common membrane potential mechanisms has been largely determined, the nature of the channels that underlie the sAHPs in neurons, both in the brain and in the periphery, remains unresolved. This short review discusses why there is no clear molecular candidate for sAHPs. [source]


    Comparative Pharmacology of Guinea Pig Cardiac Myocyte and Cloned hERG (IKr) Channel

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2004
    CHRISTINA DAVIE Ph.D.
    Introduction: This study used whole-cell, patch clamp techniques on isolated guinea pig ventricular myocytes and HEK293 cells expressing cloned human ether-a-go-go-related gene (hERG) to examine the action of drugs causing QT interval prolongation and torsades de pointes (TdP) in man. Similarities and important differences in drug actions on cardiac myocytes and cloned hERG IKr channels were established. Qualitative actions of the drugs on cardiac myocytes corresponded with results obtained from Purkinje fibers and measurement of QT interval prolongation in animal and human telemetry studies. Methods and Results: Adult guinea pig ventricular myocytes were isolated by enzymatic digestion. Cells were continuously perfused with Tyrode's solution at 33,35°C. Recordings were made using the whole-cell, patch clamp technique. Action potentials (APs) were elicited under current clamp. Voltage clamp was used to study the effect of drugs on IKr (rapidly activating delayed rectifier potassium current), INa (sodium current), and ICa (L-type calcium current). Dofetilide increased the myocyte action potential duration (APD) in a concentration-dependent manner, with a pIC50 of 7.3. Dofetilide 1 ,M elicited early afterdepolarizations (EADs) but had little affect on ICa or INa. E-4031 increased APD in a concentration-dependent manner, with a pIC50 of 7.2. In contrast, 10 ,M loratadine, desloratadine, and cetirizine had little effect on APD or IKr. Interestingly, cisapride displayed a biphasic effect on myocyte APD and inhibited ICa at 1 ,M. Even at this high concentration, cisapride did not elicit EADs. A number of AstraZeneca compounds were tested on cardiac myocytes, revealing a mixture of drug actions that were not observed in hERG currents in HEK293 cells. One compound, particularly AR-C0X, was a potent blocker of myocyte AP (pIC50 of 8.4). AR-C0X also elicited EADs in cardiac myocytes. The potencies of the same set of drugs on the cloned hERG channel also were assessed. The pIC50 values for dofetilide, E-4031, terfenadine, loratadine, desloratadine, and cetirizine were 6.8, 7.1, 7.3, 5.1, 5.2, and <4, respectively. Elevation of temperature from 22 to 35°C significantly enhanced the current kinetics and amplitudes of hERG currents and resulted in approximately fivefold increase in E-4031 potency. Conclusion: Our study demonstrates the advantages of cardiac myocytes over heterologously expressed hERG channels in predicting QT interval prolongation and TdP in man. The potencies of some drugs in cardiac myocytes were similar to hERG, but only myocytes were able to detect important changes in APD characteristics and display EADs predictive of arrhythmia development. We observed similar qualitative drug profiles in cardiac myocytes, dog Purkinje fibers, and animal and human telemetry studies. Therefore, isolated native cardiac myocytes are a better predictor of drug-induced QT prolongation and TdP than heterologously expressed hERG channels. Isolated cardiac myocytes, when used with high-throughput patch clamp instruments, may have an important role in screening potential cardiotoxic compounds in the early phase of drug discovery. This would significantly reduce the attrition rate of drugs entering preclinical and/or clinical development. The current kinetics and amplitudes of the cloned hERG channel were profoundly affected by temperature, significantly altering the potency of one drug (E-4031). This finding cautions against routine drug testing at room temperature compared to physiologic temperature when using the cloned hERG channel. [source]


    Transmural Action Potential Repolarization Heterogeneity Develops Postnatally in the Rabbit

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2004
    Ph.D., SALIM F. IDRISS M.D.
    Introduction: In the hereditary long QT syndrome, arrhythmia risk changes with age despite the presence of an ion channel mutation throughout development. Age-dependent changes in the transmural dispersion of repolarization may modulate this vulnerability. We recorded cardiac action potentials in infant, periadolescent, and adult rabbit myocardium to determine if transmural heterogeneities in repolarization are developmentally determined. Methods and Results: Arterially perfused ventricular preparations were studied from 2-week (n = 7), 7-week (n = 7), and adult (n = 6) NZW rabbits. Action potentials were recorded with microelectrodes in five regions: epicardium (epi), subepicardium (subepi), midwall (mid), subendocardium (subendo), and endocardium (endo) during endocardial S1 pacing at cycle lengths of 2,000, 1,000, and 500 ms. At 2 weeks, the transmural APD90 profile was flat. With age, APD prolongation from subepi to endo created a transmural repolarization gradient. At 7 weeks, APD90 was significantly longer at subendo [204 ± 2 ms (mean ± SE) 2,000-ms cycle length, P < 0.05] vs both endo (193 ± 2 ms) and epi (172 ± 2 ms), causing a heterogeneous transmural APD90 gradient. In adults, the transmural gradient was a smooth continuum such that APD was shortest in epicardium and longest in endocardium. Conclusion: The transmural distribution of APD is developmentally determined. Tissue-specific age-dependent changes in APD can result in transmural repolarization heterogeneity. These age-related effects may modulate arrhythmia vulnerability during development. (J Cardiovasc Electrophysiol, Vol. 15, pp. 795-801, July 2004) [source]


    Beta-Adrenergic Stimulation of Pig Myocytes with Decreased Cytosolic Free Magnesium Prolongs the Action Potential and Enhances Triggered Activity

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2002
    SHAO-KUI WEI M.D.
    Beta-Adrenergic Stimulation and Repolarization.Introduction: Heart failure results in chronic beta-adrenergic stimulation, repolarization lability, and arrhythmias associated with early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs). Having described a significant reduction in intracellular free magnesium ([Mg2+]i) in experimental heart failure, we asked whether a reduction in [Mg2+]i would delay repolarization or facilitate EADs and/or DADs. Methods and Results: Left ventricular myocytes were isolated from Yorkshire swine. Cytosolic free [Mg2+] was set at 0.12 mM (LoMg) or 1.2 mM (HiMg) through pipette dialysis. Action potentials (AP), Ca current (ICa), and sodium/calcium exchange current (INCX) were measured in the presence or absence of isoproterenol (2 ,M) at 37°C. Under basal conditions (0.1-Hz stimulation, 2 mM external [Ca2+]), reducing [Mg2+]i had no effect on AP duration and ICa but did significantly enhance INCX. In contrast, during superfusion with isoproterenol, reduced [Mg2+]i caused a significant increase in AP duration at both 50% and 90% repolarization (APD50 and APD90) compared with HiMg (P < 0.05). LoMg cells manifested a high incidence of triggered activities, including spontaneous AP, EADs, and DADs (83.3% in LoMg, n = 12 vs 38.3% in HiMg, n = 13; P < 0.05). ICa and INCX were significantly increased in LoMg cells compared with HiMg cells (P < 0.05). Conclusion: Decreased cytosolic free magnesium prolongs AP duration and increases the incidence of triggered activity during beta-adrenergic stimulation. These effects may be due to increased ICa and INCX in the presence of reduced intracellular [Mg2+]. A magnesium-dependent increase in triggered activity coupled with delayed repolarization during beta-adrenergic stimulation could contribute to the arrhythmogenic substrate in heart failure. [source]


    Inhibitory effect of erythromycin on potassium currents in rat ventricular myocytes in comparison with disopyramide

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2003
    Erika Hanada
    ABSTRACT Disopyramide, a class la antiarrhythmic agent, has been reported to induce torsades de pointes (TdP) associated with excessive QT prolongation in electrocardiogram (ECG), especially when concomitantly administered with erythromycin, a macrolide antibiotic agent. In this study, we have evaluated the effects of erythromycin on action potential duration (APD) and potassium currents in rat ventricular myocytes in comparison with disopyramide. We have evaluated the relationship between in-vitro potassium current inhibition and in-vivo QT prolongation observed in a previous study. Action potentials and membrane potassium currents, including delayed rectifier current (IK) and transient outward current (Ito), were recorded using a whole-cell patch clamp method in enzymatically-dissociated ventricular cells. Erythromycin and disopyramide prolonged APD in a concentration-dependent manner. Disopyramide (10,100 ,m) and erythromycin (100 ,m) led to increases in the APD at 90% repolarization level. Disopyramide reduced IK (IC50 = 37.2 + 0.17 ,m) and Ito (IC50 = 20.9 + 0.13 ,m) while erythromycin reduced IK (IC50 = 60.1 + 0.29 ,m) but not Ito. The observed prolongation of APD might be ascribed to the inhibition of potassium currents. Erythromycin produced the prolongation of APD and the inhibition of potassium currents with a lag time after addition of the drugs, which suggested that erythromycin might not reach potassium channels from outside the ventricular cells. The potency of disopyramide was almost equivalent under in-vitro and in-vivo conditions. However, potency of erythromycin in-vitro was far weaker than that in-vivo reported in a previous study, presumably due to a difference in the uptake of erythromycin into ventricular myocytes between in-vivo and in-vitro conditions. Therefore, when drug-induced risks of QT prolongation are to be evaluated, the difference of potencies between in-vitro and in-vivo should be taken into consideration. [source]


    Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    THE JOURNAL OF PHYSIOLOGY, Issue 10 2009
    Bradley S. Launikonis
    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was , 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2,3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. [source]


    Functional expression of the hyperpolarization-activated, non-selective cation current If in immortalized HL-1 cardiomyocytes

    THE JOURNAL OF PHYSIOLOGY, Issue 1 2002
    Laura Sartiani
    HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K+ channel. Here, we examined the presence of a hyperpolarization-activated If current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (Cm) ranged from 5 to 53 pF. If was detected in about 30 % of the cells and its occurrence was independent of the stage of the culture. If maximal slope conductance was 89.7 ± 0.4 pS pF,1 (n= 10). If current in HL-1 cells showed typical characteristics of native cardiac If current: activation threshold between ,50 and ,60 mV, half-maximal activation potential of ,83.1 ± 0.7 mV (n= 50), reversal potential at ,20.8 ± 1.5 mV (n= 10), time-dependent activation by hyperpolarization and blockade by 4 mm Cs+. In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 ,m) induced both a ,6 mV positive shift of the half-activation potential and a ,37 % increase in the fully activated If current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to If current. Cytosolic Ca2+ oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mm Cs+. Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of ,69 mV, i.e. more negative than the threshold potential for If activation. In conclusion, HL-1 cells display a hyperpolarization-activated If current which might contribute to the spontaneous contractile activity of these cells. [source]


    Laser stimulation of single auditory nerve fibers,,§¶,

    THE LARYNGOSCOPE, Issue 10 2010
    Philip D. Littlefield MD
    Abstract Objectives/Hypothesis: One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design: In vivo study using normal-hearing adult gerbils. Methods: Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 ,m and 1.873 ,m, with pulse durations of 35 ,s to 1,000 ,s, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-,m-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results: Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions: Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Laryngoscope, 2010 [source]


    Regional variations in action potential alternans in isolated murine Scn5a+/, hearts during dynamic pacing

    ACTA PHYSIOLOGICA, Issue 2 2010
    G. D. K. Matthews
    Abstract Aim:, Clinical observations suggest that alternans in action potential (AP) characteristics presages breakdown of normal ordered cardiac electrical activity culminating in ventricular arrhythmogenesis. We compared such temporal nonuniformities in monophasic action potential (MAP) waveforms in left (LV) and right ventricular (RV) epicardia and endocardia of Langendorff-perfused murine wild-type (WT), and Scn5a+/, hearts modelling Brugada syndrome (BrS) for the first time. Methods:, A dynamic pacing protocol imposed successively incremented steady pacing rates between 5.5 and 33 Hz. A signal analysis algorithm detected sequences of >10 beats showing alternans. Results were compared before and following the introduction of flecainide (10 ,m) and quinidine (5 ,m) known to exert pro- and anti-arrhythmic effects in BrS. Results:, Sustained and transient amplitude and duration alternans were both frequently followed by ventricular ectopic beats and ventricular tachycardia or fibrillation. Diastolic intervals (DIs) that coincided with onsets of transient (tr) or sustained (ss) alternans in MAP duration (DI*) and amplitude (DI,) were determined. Kruskal,Wallis tests followed by Bonferroni-corrected Mann,Whitney U -tests were applied to these DI results sorted by recording site, pharmacological conditions or experimental populations. WT hearts showed no significant heterogeneities in any DI. Untreated Scn5a+/, hearts showed earlier onsets of transient but not sustained duration alternans in LV endocardium compared with RV endocardium or LV epicardium. Flecainide administration caused earlier onsets of both transient and sustained duration alternans selectively in the RV epicardium in the Scn5a+/, hearts. Conclusion:, These findings in a genetic model thus implicate RV epicardial changes in the arrhythmogenicity produced by flecainide challenge in previously asymptomatic clinical BrS. [source]


    Zebrafish as a model for long QT syndrome: the evidence and the means of manipulating zebrafish gene expression

    ACTA PHYSIOLOGICA, Issue 3 2010
    I. U. S. Leong
    Abstract Congenital long QT syndrome (LQT) is a group of cardiac disorders associated with the dysfunction of cardiac ion channels. It is characterized by prolongation of the QT-interval, episodes of syncope and even sudden death. Individuals may remain asymptomatic for most of their lives while others present with severe symptoms. This heterogeneity in phenotype makes diagnosis difficult with a greater emphasis on more targeted therapy. As a means of understanding the molecular mechanisms underlying LQT syndrome, evaluating the effect of modifier genes on disease severity as well as to test new therapies, the development of model systems remains an important research tool. Mice have predominantly been the animal model of choice for cardiac arrhythmia research, but there have been varying degrees of success in recapitulating the human symptoms; the mouse cardiac action potential (AP) and surface electrocardiograms exhibit major differences from those of the human heart. Against this background, the zebrafish is an emerging vertebrate disease modelling species that offers advantages in analysing LQT syndrome, not least because its cardiac AP much more closely resembles that of the human. This article highlights the use and potential of this species in LQT syndrome modelling, and as a platform for the in vivo assessment of putative disease-causing mutations in LQT genes, and of therapeutic interventions. [source]


    Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences

    ACTA PHYSIOLOGICA, Issue 2 2010
    M. Kristensen
    Abstract Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force development in unfatigued skeletal muscle. Several in vivo studies have shown that [K+]e increases progressively with increasing work intensity, reaching values higher than 10 mm. This increase in [K+]e is expected to be even higher in the transverse (T)-tubules than the concentration reached in the interstitium. Besides the voltage-sensitive K+ (Kv) channels that generate the action potential (AP) it is suggested that the big-conductance Ca2+ -dependent K+ (KCa1.1) channel contributes significantly to the K+ release into the T-tubules. Also the ATP-dependent K+ (KATP) channel participates, but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important protein that mediates K+ reuptake in the T-tubules is the Na+,K+ -ATPase ,2 dimers, but a significant contribution of the strong inward rectifier K+ (Kir2.1) channel is also suggested. The Na+, K+, 2Cl, 1 (NKCC1) cotransporter also participates in K+ reuptake but probably mainly from the interstitium. The relative content of the different K+ -transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K+]e tolerance observed. [source]


    Repolarization of the cardiac action potential.

    ACTA PHYSIOLOGICA, Issue 2010
    Does an increase in repolarization capacity constitute a new anti-arrhythmic principle?
    Abstract The cardiac action potential can be divided into five distinct phases designated phases 0,4. The exact shape of the action potential comes about primarily as an orchestrated function of ion channels. The present review will give an overview of ion channels involved in generating the cardiac action potential with special emphasis on potassium channels involved in phase 3 repolarization. In humans, these channels are primarily Kv11.1 (hERG1), Kv7.1 (KCNQ1) and Kir2.1 (KCNJ2) being the responsible ,-subunits for conducting IKr, IKs and IK1. An account will be given about molecular components, biophysical properties, regulation, interaction with other proteins and involvement in diseases. Both loss and gain of function of these currents are associated with different arrhythmogenic diseases. The second part of this review will therefore elucidate arrhythmias and subsequently focus on newly developed chemical entities having the ability to increase the activity of IKr, IKs and IK1. An evaluation will be given addressing the possibility that this novel class of compounds have the ability to constitute a new anti-arrhythmic principle. Experimental evidence from in vitro, ex vivo and in vivo settings will be included. Furthermore, conceptual differences between the short QT syndrome and IKr activation will be accounted for. [source]


    Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during development

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003
    Suchitra Parameshwaran-Iyer
    Abstract The KCNC1 (previously Kv3.1) potassium channel, a delayed rectifier with a high threshold of activation, is highly expressed in the time coding nuclei of the adult chicken and barn owl auditory brainstem. The proposed role of KCNC1 currents in auditory neurons is to reduce the width of the action potential and enable neurons to transmit high frequency temporal information with little jitter. Because developmental changes in potassium currents are critical for the maturation of the shape of the action potential, we used immunohistochemical methods to examine the developmental expression of KCNC1 subunits in the avian auditory brainstem. The KCNC1 gene gives rise to two splice variants, a longer KCNC1b and a shorter KCNC1a that differ at the carboxy termini. Two antibodies were used: an antibody to the N-terminus that does not distinguish between KCNC1a and b isoforms, denoted as panKCNC1, and another antibody that specifically recognizes the C terminus of KCNC1b. A comparison of the staining patterns observed with the panKCNC1 and the KCNC1b specific antibodies suggests that KCNC1a and KCNC1b splice variants are differentially regulated during development. Although panKCNC1 immunoreactivity is observed from the earliest time examined in the chicken (E10), a subcellular redistribution of the immunoproduct was apparent over the course of development. KCNC1b specific staining has a late onset with immunostaining first appearing in the regions that map high frequencies in nucleus magnocellularis (NM) and nucleus laminaris (NL). The expression of KCNC1b protein begins around E14 in the chicken and after E21 in the barn owl, relatively late during ontogeny and at the time that synaptic connections mature morphologically and functionally. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 165,178, 2003 [source]


    Electrophysiological sensory demyelination in typical chronic inflammatory demyelinating polyneuropathy

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 7 2010
    Y. A. Rajabally
    Background:, The presence of electrophysiological demyelination of sensory nerves is not routinely assessed in the evaluation of suspected chronic inflammatory demyelinating polyneuropathy (CIDP). Whether this can be useful is unknown. Methods:, We compared, using surface recording techniques, in 19 patients with typical CIDP and 26 controls with distal large fibre sensory axonal neuropathy, the forearm median sensory conductions, sensory nerve action potential (SNAP) amplitudes and durations and sensory nerve conduction velocities (SNCVs) of median, radial and sural nerves. Results:, Median nerve sensory conduction block (SCB) across the forearm was greater in CIDP patients than in controls (P = 0.005). SNAP durations were longer in CIDP patients for median (P = 0.001) and sural nerves (P = 0.004). Receiver operating characteristic (ROC) curves provided sensitive (>40%) and specific (>95%) cut-offs for median nerve SCB as well as median and sural SNAP durations. SNCVs were significantly slower for median and sural nerves in CIDP patients, but ROC curves did not demonstrate cut-offs with useful sensitivities/specificities. Median SCB or prolonged median SNAP duration or prolonged sural SNAP duration offered a sensitivity of 73.7% for CIDP and specificity of 96.2%. Used as additional parameters, they improved diagnostic sensitivity of the American Academy of Neurology (AAN) criteria for CIDP of 1991, from 42.1% to 78.9% in this population, with preserved specificity of 100%. Discussion:, Sensory electrophysiological demyelination is present and may be diagnostically useful in typical CIDP. SCB detection and SNAP duration prolongation appear to represent more useful markers of demyelination than SNCV reduction. [source]


    Electrical activation of the orbicularis oculi muscle does not increase the effectiveness of botulinum toxin type A in patients with blepharospasm

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 3 2010
    A. Conte
    Background:, Our primary aim in this study was to determine whether electrically induced activation of the injected muscle increases effectiveness of botulinum type A toxin (BonT-A) in patients with blepharospasm (BPS). The second aim was to assess the safety of BonT-A by investigating whether BonT-A injection alters the excitability of blink reflex circuits in the brainstem. Methods:, Twenty-three patients with BPS received BonT-A (Botox) injected bilaterally into the orbicularis oculi muscle at a standard dose. In 18 patients, electrically induced muscle activation of the orbicularis oculi muscle on one side was performed for 60 min (4 Hz frequency) in a single session, immediately after BonT-A injection and in five patients for 60 min once a day for five consecutive days. The severity of BPS was assessed clinically with the BPS score. Compound muscle action potential (cMAPs) from the orbicularis oculi muscles were measured bilaterally. The blink reflex recovery cycle was studied at interstimulus intervals of 250 and 500 ms. Participants underwent clinical and neurophysiological assessment before BonT-A injection (T0) and 2 weeks thereafter (T1). Results:, Compound muscle action potential amplitude significantly decreased at T1 but did not differ between stimulated and non-stimulated orbicularis oculi in the two groups. BonT-A injection left the blink reflex recovery cycle tested on the stimulated and non-stimulated sides unchanged. Conclusions:, In patients with BPS, the electrically induced muscle activation neither increases the effectiveness of BonT-A nor produces larger electrophysiological peripheral effects. The lack of BonT-A-induced changes in the blink reflex recovery cycle provides evidence that BonT-A therapy is safe in patients with BPS. [source]


    A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
    Richardson N. Leão
    Abstract Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a ,dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials). [source]


    Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004
    Margaret Barnes-Davies
    Abstract Principal neurons of the lateral superior olive (LSO) detect interaural intensity differences by integration of excitatory projections from ipsilateral bushy cells and inhibitory inputs from the medial nucleus of the trapezoid body. The intrinsic membrane currents active around firing threshold will form an important component of this binaural computation. Whole cell patch recording in an in vitro brain slice preparation was employed to study conductances regulating action potential (AP) firing in principal neurons. Current-clamp recordings from different neurons showed two types of firing pattern on depolarization, one group fired only a single initial AP and had low input resistance while the second group fired multiple APs and had a high input resistance. Under voltage-clamp, single-spiking neurons showed significantly higher levels of a dendrotoxin-sensitive, low threshold potassium current (ILT). Block of ILT by dendrotoxin-I allowed single-spiking cells to fire multiple APs and indicated that this current was mediated by Kv1 channels. Both neuronal types were morphologically similar and possessed similar amounts of the hyperpolarization-activated nonspecific cation conductance (Ih). However, single-spiking cells predominated in the lateral limb of the LSO (receiving low frequency sound inputs) while multiple-firing cells dominated the medial limb. This functional gradient was mirrored by a medio-lateral distribution of Kv1.1 immunolabelling. We conclude that Kv1 channels underlie the gradient of LSO principal neuron firing properties. The properties of single-spiking neurons would render them particularly suited to preserving timing information. [source]


    5-HT inhibits N-type but not L-type Ca2+ channels via 5-HT1A receptors in lamprey spinal neurons

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
    Russell H. Hill
    Abstract 5-HT is a potent modulator of locomotor activity in vertebrates. In the lamprey, 5-HT dramatically slows fictive swimming. At the neuronal level it reduces the postspike slow afterhyperpolarization (sAHP), which is due to apamin-sensitive Ca2+ -dependent K+ channels (KCa). Indirect evidence in early experiments suggested that the sAHP reduction results from a direct action of 5-HT on KCa channels rather than an effect on the Ca2+ entry during the action potential [Wallén et al., (1989) J. Neurophysiol., 61, 759,768]. In view of the characterization of different subtypes of Ca2+ channels with very different properties, we now reinvestigate if there is a selective action of 5-HT on a Ca2+ channel subtype in dissociated spinal neurons in culture. 5-HT reduced Ca2+ currents from high voltage activated channels. N-type, but not L-type, Ca2+ channel blockers abolished this 5-HT-induced reduction. It was also confirmed that 5-HT depresses Ca2+ currents in neurons, including motoneurons, in the intact spinal cord. 8-OH-DPAT, a 5-HT1A receptor agonist, also inhibited Ca2+ currents in dissociated neurons. After incubation in pertussis toxin, to block Gi/o proteins, 5-HT did not reduce Ca2+ currents, further indicating that the effect is caused by an activation of 5-HT1A receptors. As N-type, but not L-type, Ca2+ channels are known to mediate the activation of KCa channels and presynaptic transmitter release at lamprey synapses, the effects of 5-HT reported here can contribute to a reduction in both actions. [source]


    Do neurons have a reserve of sodium channels for the generation of action potentials?

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000
    A study on acutely isolated CA1 neurons from the guinea-pig hippocampus
    Abstract The density of voltage-gated sodium channels is high in several regions of the neuronal membrane. It is unclear if this density of channels represents a reserve for the neuron, or if it fulfils a special role in action potential firing. This problem was addressed by studying sodium currents and action potentials in acutely isolated hippocampal CA1 neurons whose number of active sodium channels was acutely changed by applying the sodium channel blocker tetrodotoxin (TTX) at different concentrations. The results show that more than a third of the sodium channels can fail without affecting the single action potential. Thus, the neurons have a remarkable surplus of sodium channels. The surplus, however, is necessary for repetitive action potential firing, as every decrease in the fraction of sodium channels reduces the maximal frequency of action potentials that can be generated by the neuron. [source]


    The action of high K+ and aglycaemia on the electrical properties and synaptic transmission in rat intracardiac ganglion neurones in vitro

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2009
    Jhansi Dyavanapalli
    We have investigated the action of two elements of acute ischaemia, high potassium and aglycaemia, on the electrophysiological properties and ganglionic transmission of adult rat intracardiac ganglion (ICG) neurones. We used a whole-mount ganglion preparation of the right atrial ganglion plexus and sharp microelectrode recording techniques. Increasing extracellular K+ from its normal value of 4.7 mm to 10 mm decreased membrane potential and action potential after-hyperpolarization amplitude but otherwise had no effect on postganglionic membrane properties. It did, however, reduce the ability of synaptically evoked action potentials to follow high-frequency (100 Hz) repetitive stimulation. A further increase in K+ changed both the passive and the active membrane properties of the postganglionic neurone: time constant, membrane resistance and action potential overshoot were all decreased in high K+ (20 mm). The ICG neurones display a predominantly phasic discharge in response to prolonged depolarizing current pulses. High K+ had no impact on this behaviour but reduced the time-dependent rectification response to hyperpolarizing currents. At 20 mm, K+ practically blocked ganglionic transmission in most neurones at all frequencies tested. Aglycaemia, nominally glucose-free physiological saline solution (PSS), increased the time constant and membrane resistance of ICG neurones but otherwise had no action on their passive or active properties or ganglionic transmission. However, the combination of aglycaemia and 20 mm K+ displayed an improvement in passive properties and ganglionic transmission when compared with 20 mm K+ PSS. These data indicate that the presynaptic terminal is the primary target of high extracellular potassium and that aglycaemia may have protective actions against this challenge. [source]


    Effect of Cl, channel blockers on aconitine-induced arrhythmias in rat heart

    EXPERIMENTAL PHYSIOLOGY, Issue 6 2005
    Shi-Sheng Zhou
    The effects of Cl, channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid (NFA) on aconitine-induced arrhythmias were investigated. Left ventricular pressure and electrocardiogram were monitored in Langendorff-perfused rat hearts. Whole-cell patch-clamp and current-clamp techniques were used to measure sodium current (INa) and action potential (AP), respectively, in single rat cardiac ventricular myocytes. Addition of the Na+ channel agonist aconitine (0.1 ,m) to the perfusion solution produced polymorphic ventricular arrhythmias with a latent period of 25.5 ± 6.3 s. NPPB could reverse aconitine-induced arrhythmias. A similar effect was observed by using NFA. NPPB and NFA reversibly depressed the upstroke of the AP in a dose-dependent manner with IC50 values of ,12.3 and ,73.1 ,m, respectively, without significantly affecting the resting potential of rat ventricular myocytes. Both Cl, channel blockers inhibited INa and induced a leftward shift of the steady-state inactivation of INa. In conclusion, the results of this study demonstrate that NPPB as well as NFA can suppress aconitine-induced arrhythmias in rat hearts mainly by inhibiting cardiac INa. [source]


    Phenotype and Function of Somatic Primary Afferent Nociceptive Neurones with C-, A,- or A,/,-Fibres

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2002
    S. N. Lawson
    Nociceptive dorsal root ganglion (DRG) neurones have fibres that conduct in the C, A, and A,/, conduction velocity range. The properties of nociceptive compared with non-nociceptive somatic afferent dorsal root ganglion neurones appear to fall into two patterns, A and B. Pattern A properties of nociceptive neurones, the more common type, include longer action potential duration and slower maximum rate of fibre firing, as well as a greater expression of substance P and calcitonin gene-related peptide immunoreactivity. The values of pattern A properties appear to be graded according to the conduction velocity group (C, A, or A,/,) of the fibres. The most pronounced forms of A-type properties are expressed by nociceptive neurones with C-fibres, and these become less pronounced in nociceptive neurones with A,-fibres and least pronounced in those with A,/, fibres (C > A, > A,/,). Some of these properties are also expressed in a less extreme but similarly graded manner through C, A, and A,/, groups of non-nociceptive low threshold mechanoreceptive (LTM) neurone. The less common pattern B properties of nociceptive neurones have similar values in C-, A,- and A,/,-fibre nociceptive neurones but these clearly differ from LTM units with C-, A,- and A,/,-fibre conduction velocities. These features of nociceptive neurones include consistently larger action potential overshoots and longer after-hyperpolarisation durations in nociceptive than in LTM neurones. [source]


    Deficiency of electroneutral K+,Cl, cotransporter 3 causes a disruption in impulse propagation along peripheral nerves

    GLIA, Issue 13 2010
    Yuan-Ting Sun
    Abstract Nerve conduction requires the fine tuning of ionic currents through delicate interactions between axons and Schwann cells. The K+,Cl, cotransporter (KCC) family includes four isoforms (KCC1,4) that play an important role in the maintenance of cellular osmotic homeostasis via the coupled electroneutral movement of K+ and Cl, with concurrent water flux. Mutation in SLC12A6 gene encoding KCC3 results in an autosomal recessive disease, known as agenesis of the corpus callosum associated with peripheral neuropathy. Nevertheless, the role of KCC3 in nerve function remains a puzzle. In this study, the microscopic examination of KCC isoforms expressed in peripheral nerves showed high expression of KCC2,4 in nodal segments of the axons and in the perinucleus and microvilli of Schwann cells. The KCC inhibitor [[(dihydroindenyl)oxy]alkanoic acid] but not the Na+,K+,2Cl, -cotransport inhibitor (bumetanide) dose-dependently suppressed the amplitude and area of compound muscle action potential, indicating the involvement of KCC activity in peripheral nerve conduction. Furthermore, the amplitude and area under the curve were smaller, and the nerve conduction velocity was slower in nerves from KCC3,/, mice than in nerves from wild-type mice, while the expression pattern of KCC2 and KCC4 was similar in KCC3 kockout and wild-type strains. KCC3,/, mice also manifested a prominent motor deficit in the beam-walking test. This is the first study to demonstrate that the K+,Cl, cotransporter activity of KCC3 contributes to the propagation of action potentials along peripheral nerves. © 2010 Wiley-Liss, Inc. [source]


    Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve

    GLIA, Issue 11 2009
    Stavros Constantinou
    Abstract The damaging effects of excessive glutamate receptor activation have been highlighted recently during injury in developing central white matter. We have examined the effects of acute exposure to four other neurotransmitters that have known actions on white matter. Eighty minutes of Glycine or GABA-A receptor activation produced a significant fall in the compound action potential recorded from isolated post-natal day 10 rat optic nerve. This effect was largely reversed upon washout. Nicotinic acetylcholine receptor (nAChR) or adrenoreceptor activation with noradrenalin resulted in an ,35% block of the action potential that did not reverse during a 30-min washout period. While the effect of nAChR activation was blocked by a nAChR antagonist, the effect of noradrenalin was not ablated by ,- or ,-adrenoreceptor blockers applied alone or in combination. In the absence of noradrenalin, co-perfusion with ,- and ,-adrenoreceptor blockers resulted in nonreversible nerve failure indicating that tonic adrenoreceptor activation is required for nerve viability, while overactivation of these receptors is also damaging. Nerves exposed to nAChR + adrenoreceptor activation showed no axon pathology but had extensive glial injury revealed by ultrastructural analysis. Oligodendroglia exhibited regions of membrane vacuolization while profound changes were evident in astrocytes and included the presence of swollen and expanded mitochondria, vacuolization, cell processes disintegration, and membrane breakdown. Blinded assessment revealed higher levels of astrocyte injury than oligodendroglial injury. The findings show that overactivation of neurotransmitter receptors other than those for glutamate can produce extensive injury to developing white matter, a phenomenon that may be clinically significant. © 2009 Wiley-Liss, Inc. [source]