Home About us Contact | |||
Actin Reorganization (actin + reorganization)
Selected AbstractsEarly molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreadingCYTOSKELETON, Issue 3 2004Baruch Zimerman Cell adhesion to the extracellular matrix triggers the formation of integrin-mediated contact and reorganization of the actin cytoskeleton. Examination of nascent adhesions, formed during early stages of fibroblast spreading, reveals a variety of forms of actin-associated matrix adhesions. These include: (1) small (,1 ,m), dot-like, integrin-, vinculin-, paxillin-, and phosphotyrosine-rich structures, with an F-actin core, broadly distributed over the ventral surfaces of the cells; (2) integrin-, vinculin-, and paxillin-containing "doublets" interconnected by short actin bundles; (3) arrays of actin-vinculin complexes. Such structures were formed by freshly plated cells, as well as by cells recovering from latrunculin treatment. Time-lapse video microscopy of such cells, expressing GFP-actin, indicated that long actin cables are formed by an end-to-end lining-up and apparent fusion of short actin bundles. All these structures were prominent during cell spreading, and persisted for up to 30,60 min after plating. Upon longer incubation, they were gradually replaced by stress fibers, associated with focal adhesions at the cell periphery. Direct examination of paxillin and actin reorganization in live cells revealed alignment of paxillin doublets, forming long and highly dynamic actin bundles, undergoing translocation, shortening, splitting, and convergence. The mechanisms underlying the assembly and reorganization of actin-associated focal adhesions and the involvement of mechanical forces in regulating their dynamic properties are discussed. Cell Motil. Cytoskeleton 58:143,159, 2004. © 2004 Wiley-Liss, Inc. [source] Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cellsCYTOSKELETON, Issue 4 2003Sophie Launay Abstract The Wiskott-Aldrich Syndrome (WAS) is a disease associated with mutations in the WAS gene and characterised by developmental defects in haematopoietic cells such as myeloid cells. The Wiskott-Aldrich Syndrome protein (WASP)-family includes Scar1 and WASP, which are key regulators of actin reorganization in motile cells. To understand the roles of Scar1 and WASP in myeloid cells and their cytoskeletal control in haematopoietic tissues, we have explored their expression during differentiation of the promyeloid cell line HL-60. Undifferentiated HL-60 cells expressed Scar1 and WASP, and differentiation to neutrophils, induced by retinoic acid or non-retinoid agent treatments, led to a decrease in the level of expression of Scar1, whereas WASP expression was unaffected. Differentiation to monocytes/macrophages, induced by phorbol ester treatment, resulted in a decreased expression of both proteins in the adherent mature cells. Vitamin D3 treatment or cytochalasin D in combination with PMA treatment did not affect WASP expression suggesting that adhesion and cytoskeletal integrity were both essential to regulate WASP expression. Scar1 expression was regulated by differentiation, adhesion, and cytoskeletal integrity. Recently, WASP was found to colocalize with actin in the podosomes. In contrast, we show here that Scar1 did not localize with the podosomes in mature monocytes/macrophages. These observations show for the first time that modulation of Scar1 and WASP expression is a component of the differentiation program of myeloid precursors and indicate that WASP and Scar1 have different roles in mature myeloid cells. Cell Motil. Cytoskeleton 54:274,285, 2003. © 2003 Wiley-Liss, Inc. [source] ROCK inhibitor (Y27632) increases apoptosis and disrupts the actin cortical mat in embryonic avian corneal epitheliumDEVELOPMENTAL DYNAMICS, Issue 3 2004Kathy K.H. Svoboda Abstract The embryonic chicken corneal epithelium is a unique tissue that has been used as an in vitro epithelial sheet organ culture model for over 30 years (Hay and Revel [1969] Fine structure of the developing Avian cornea. Basel, Switzerland: S. Karger A.G.). This tissue was used to establish that epithelial cells could produce extracellular matrix (ECM) proteins such as collagen and proteoglycans (Dodson and Hay [1971] Exp Cell Res 65:215,220; Meier and Hay [1973] Dev Biol 35:318,331; Linsenmayer et al. [1977] Proc Natl Acad Sci U S A 74:39,43; Hendrix et al. [1982] Invest Ophthalmol Vis Sci 22:359,375). This historic model was also used to establish that ECM proteins could stimulate actin reorganization and increase collagen synthesis (Sugrue and Hay [1981] J Cell Biol 91:45,54; Sugrue and Hay [1982] Dev Biol 92:97,106; Sugrue and Hay [1986] J Cell Biol 102:1907,1916). Our laboratory has used the model to establish the signal transduction pathways involved in ECM-stimulated actin reorganization (Svoboda et al. [1999] Anat Rec 254:348,359; Chu et al. [2000] Invest Ophthalmol Vis Sci 41:3374,3382; Reenstra et al. [2002] Invest Ophthalmol Vis Sci 43:3181,3189). The goal of the current study was to investigate the role of ECM in epithelial cell survival and the role of Rho-associated kinase (p160 ROCK, ROCK-1, ROCK-2, referred to as ROCK), in ECM and lysophosphatidic acid (LPA) -mediated actin reorganization. Whole sheets of avian embryonic corneal epithelium were cultured in the presence of the ROCK inhibitor, Y27632 at 0, 0.03, 0.3, 3, or 10 ,M before stimulating the cells with either collagen (COL) or LPA. Apoptosis was assessed by Caspase-3 activity assays and visualized with annexin V binding. The ROCK inhibitor blocked actin cortical mat reformation and disrupted the basal cell lateral membranes in a dose-dependent manner and increased the apoptosis marker annexin V. In addition, an in vitro caspase-3 activity assay was used to determine that caspase-3 activity was higher in epithelia treated with 10 ,M Y-27632 than in those isolated without the basal lamina or epithelia stimulated with fibronectin, COL, or LPA. In conclusion, ECM molecules decreased apoptosis markers and inhibiting the ROCK pathway blocked ECM stimulated actin cortical mat reformation and increased apoptosis in embryonic corneal epithelial cells. Developmental Dynamics 229:579,590, 2004. © 2004 Wiley-Liss, Inc. [source] A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreadingGENES TO CELLS, Issue 5 2005Daisuke Yamazaki When a cell spreads and moves, reorganization of the actin cytoskeleton pushes the cell membrane, and the resulting membrane protrusions create new points of contact with the substrate and generate the locomotive force. Membrane extension and adhesion to a substrate must be tightly coordinated for effective cell movement, but little is known about the mechanisms underlying these processes. WAVEs are critical regulators of Rac-induced actin reorganization. WAVE2 is essential for formation of lamellipodial structures at the cell periphery stimulated by growth factors, but it is thought that WAVE1 is dispensable for such processes in mouse embryonic fibroblasts (MEFs). Here we show a novel function of WAVE in lamellipodial protrusions during cell spreading. During spreading on fibronectin (FN), MEFs with knockouts (KOs) of WAVE1 and WAVE2 showed different membrane dynamics, suggesting that these molecules have distinct roles in lamellipodium formation. Formation of lamellipodial structures on FN was inhibited in WAVE2 KO MEFs. In contrast, WAVE1 is not essential for extension of lamellipodial protrusions but is required for stabilization of such structures. WAVE1-deficiency decreased the density of actin filaments and increased the speed of membrane extension, causing deformation of focal complex at the tip of spreading edges. Thus, at the tip of the lamellipodial protrusion, WAVE2 generates the membrane protrusive structures containing actin filaments, and modification by WAVE1 stabilizes these structures through cell-substrate adhesion. Coordination of WAVE1 and WAVE2 activities appears to be necessary for formation of proper actin structures in stable lamellipodia. [source] The first CH domain of affixin activates Cdc42 and Rac1 through ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factorGENES TO CELLS, Issue 3 2004Wataru Mishima Rho GTPases, Cdc42 and Rac1, play pivotal roles in cell migration by efficiently integrating cell-substrate adhesion and actin polymerization. Although it has been suggested that integrins stimulate these Rho GTPases via some of integrin binding proteins such as focal adhesion kinase (FAK) and paxillin, the precise molecular mechanism is largely unknown. In this study, we showed that the over-expression of RP1 corresponding to the first CH domain (CH1) of affixin, an integrin-linked kinase (ILK)-binding protein, induced a significant actin reorganization in MDCK cells by activating Cdc42/Rac1. Affixin full length and RP1 co-immunoprecipitated with ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor (GEF), and they co-localized at the tips of lamellipodia in motile cells. The involvement of ,PIX in the RP1-induced Cdc42 activation was demonstrated by the significant dominant negative effect of a point mutant of ,PIX, ,PIX (L383R, L384S), lacking GEF activity. Our data strongly support that ILK and affixin provide a novel signalling pathway that links integrin signalling to Cdc42/Rac1 activation. [source] Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates collagen phagocytosis by human gingival fibroblastsMOLECULAR ORAL MICROBIOLOGY, Issue 3 2008N. Takahashi Introduction:, Collagen phagocytosis by fibroblasts is involved in the intracellular pathway related to collagen breakdown in soft connective tissues. The possible role of lipopolysaccharide (LPS) in regulating this fibroblast function has not been elucidated so we investigated the effect of LPS from Actinobacillus actinomycetemcomitans, a periodontopathic bacterium, on collagen phagocytic activity in human gingival fibroblasts and associated regulatory mechanisms. Methods:, LPS pretreatment stimulated binding of collagen-coated beads to cells and, subsequently, their internalization. Results:, The LPS-activated collagen phagocytic process was enhanced in the presence of the soluble form of CD14 (sCD14) or LPS-binding protein (LBP), while the LPS/LBP treatment activated Akt and induced actin reorganization. Furthermore, these LPS/LBP-induced effects were partially suppressed by adding phosphatidyl-inositol-3 kinase (PI3K) inhibitors. Conclusion:, These results suggest that A. actinomycetemcomitans LPS disturbs the homeostasis of collagen metabolism within gingival tissue by facilitating collagen phagocytosis by gingival fibroblasts, and serum sCD14 and LBP positively regulate the action of LPS. In addition, the PI3K/Akt signaling is thought to partially mediate the LPS/LBP-stimulated collagen phagocytic pathway, which may be dependent on actin cytoskeletal rearrangement. [source] Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2003Elisabetta Tosti Abstract The effects of bioactive aldehydes from diatoms, unicellular algae at the base of the marine food web, were studied on fertilization and early development processes of the ascidian Ciona intestinalis. Using whole-cell voltage clamp techniques, we show that 2- trans -4- trans -decadienal (DD) and 2- trans -4- cis -7- cis -decatrienal (DT) inhibited the fertilization current which is generated in oocytes upon interaction with the spermatozoon. This inhibition was dose-dependent and was accompanied by inhibition of the voltage-gated calcium current activity of the plasma membrane. DD and DT did not inhibit the subsequent contraction of the cortex. Moreover, DD specifically acted as a fertilization channel inhibitor since it did not affect the steady state conductance of the plasma membrane or gap junctional (GJ) communication within blastomeres of the embryo. On the other hand, DD did affect actin reorganization even though the mechanism of action on actin filaments differed from that of other actin blockers. Possibly this effect on actin reorganization was responsible for the subsequent teratogenic action on larval development. The effect of DD was reversible if oocytes were washed soon after fertilization indicating that DD may specifically target certain fertilization mechanisms. Thus, diatom reactive aldehydes such as DD may have a dual effect on reproductive processes, influencing primary fertilization events such as gating of fertilization channels and secondary processes such as actin reorganization which is responsible for the segregation of cell lineages. These findings add to a growing body of evidence on the antiproliferative effects of diatom-derived aldehydes. Our results also report, for the first time, on the action of a fertilization channel blocker in marine invertebrates. Mol. Reprod. Dev. 66: 72,80, 2003. © 2003 Wiley-Liss, Inc. [source] |