Home About us Contact | |||
Actin
Kinds of Actin Terms modified by Actin Selected AbstractsActin on DNA,An ancient and dynamic relationship,CYTOSKELETON, Issue 8 2010Kari-Pekka Skarp Abstract In the cytoplasm of eukaryotic cells the coordinated assembly of actin filaments drives essential cell biological processes, such as cell migration. The discovery of prokaryotic actin homologues, as well as the appreciation of the existence of nuclear actin, have expanded the scope by which the actin family is utilized in different cell types. In bacteria, actin has been implicated in DNA movement tasks, while the connection with the RNA polymerase machinery appears to exist in both prokaryotes and eukaryotes. Within the nucleus, actin has further been shown to play a role in chromatin remodeling and RNA processing, possibly acting to link these to transcription, thereby facilitating the gene expression process. The molecular mechanism by which actin exerts these newly discovered functions is still unclear, because while polymer formation seems to be required in bacteria, these species lack conventional actin-binding proteins to regulate the process. Furthermore, although the nucleus contains a plethora of actin-regulating factors, the polymerization status of actin within this compartment still remains unclear. General theme, however, seems to be actin's ability to interact with numerous binding partners. A common feature to the novel modes of actin utilization is the connection between actin and DNA, and here we aim to review the recent literature to explore how this connection is exploited in different contexts. [source] Actin and myosin in Gregarina polymorphaCYTOSKELETON, Issue 2 2004Matthew B. Heintzelman Abstract Actin and two class XIV unconventional myosins have been cloned from Gregarina polymorpha, a large protozoan parasite inhabiting the gut of the mealworm Tenebrio molitor. These proteins were most similar to their homologues expressed in the coccidian and haemosporidian Apicomplexa such as Toxoplasma and Plasmodium despite the significant morphological differences among these parasites. Both actin and G. polymorpha myosin A (GpMyoA), a 92.6-kDa protein characterized by a canonical myosin head domain and short, highly basic tail, localized to both the longitudinally-disposed surface membrane folds (epicytic folds) of the parasite as well as to the subjacent rib-like myonemes that gird the parasite cortex. G. polymorpha myosin B (GpMyoB), a 96.3-kDa myosin, localized exclusively to the epicytic folds of the parasite. Both myosins were tightly associated with the cortical cytoskeleton and were solubilized only with a combination of high salt and detergent. Both GpMyoA and GpMyoB could bind to actin in an ATP-sensitive fashion. The distribution of actin and the unconventional myosins in G. polymorpha was consistent with their proposed participation in both the rapid (1,10 ,m/sec) gliding motility exhibited by the gregarines as well as the myoneme-mediated bending motions that have been observed in these parasites. Cell Motil. Cytoskeleton 58:83,95, 2004. © 2004 Wiley-Liss, Inc. [source] Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actinFEBS JOURNAL, Issue 18 2010Anastasia V. Pivovarova Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. Structured digital abstract ,,MINT-7980274: Actin (uniprotkb:P68135) and Actin (uniprotkb:P68135) bind (MI:0407) by biophysical (MI:0013) [source] The testicular capsule and peritubular tissue of birds: morphometry, histology, ultrastructure and immunohistochemistryJOURNAL OF ANATOMY, Issue 6 2007T. A. Aire Abstract The testicular capsule was studied histologically, morphometrically, ultrastructurally and immunohistochemically in the Japanese quail, domestic fowl, turkey and duck (all members of the Galloanserae). The testicular capsule was, relative to mammals, thin, being 81.5 ± 13.7 µm in the quail, 91.7 ± 6.2 µm in the domestic fowl, 104.5 ± 29.8 µm in the turkey and 91.8 ± 18.9 µm in the duck. The orchido-epididymal border (hilus) of the capsule was much thicker than elsewhere in all birds (from 233.7 ± 50.7 µm in the duck to 550.0 ± 147.3 µm thick in the turkey). The testicular capsule, other than the tunica serosa and tunica vasculosa, comprised, in the main, smooth muscle-like or myoid cells running mainly in one direction, and disposed in one main mass. Peritubular tissue was similarly composed of smooth muscle-like cells disposed in several layers. Actin and desmin intermediate filaments were immunolocalized in the inner cellular layers of the capsule in the quail, domestic fowl and duck, but uniformly in the turkey. Vimentin intermediate filament immunoreaction in the capsule was moderately and uniformly positive in the testicular capsule of only the quail. Actin and desmin, but not vimentin (except very faintly in the turkey) or cytokeratin, were immunolocalized in the peritubular tissue of all birds. The results therefore establish, or complement, some previous observations that these birds have contractile cells in their testicular capsule and peritubular tissue, whose function probably includes the transport of testicular fluid into the excurrent duct system. [source] Nuclear actin is involved in the regulation of CSF1 gene transcription in a chromatin required, BRG1 independent mannerJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007Zhaoxia Song Abstract Actin is an important protein in nucleus and has been implicated in transcription, however, the mechanism of its function in transcription is still not clear. In this article, we studied the role of actin in the regulation of human CSF1 gene transcription. Our results showed that nuclear actin stimulates the activity of CSF1 promoter, and the role in augmenting CSF1 gene transcription requires the formation of chromatin and Z-DNA structure. The ATP binding motifs of nuclear actin are essential for its function in regulating CSF1 gene transcription, and upon actin overexpression, there is an increase in the ATPase activity of nuclear proteins. Further investigation revealed that nuclear actin regulates CSF1 gene transcription in a BRG1 independent manner. Together, these original results have provided evidence for further understanding the mechanism of nuclear actin in regulating gene transcription. J. Cell. Biochem. 102: 403,411, 2007. © 2007 Wiley-Liss, Inc. [source] Signaling mechanisms that regulate actin-based motility processes in the nervous systemJOURNAL OF NEUROCHEMISTRY, Issue 3 2002Gary Meyer Abstract Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood. [source] Ethanol Increases Fetal Human Neurosphere Size and Alters Adhesion Molecule Gene ExpressionALCOHOLISM, Issue 2 2008Sharada D. Vangipuram Background:, Ethanol (ETOH) consumption by pregnant women can result in Fetal Alcohol Spectrum Disorder (FASD). To date, the cellular targets and mechanisms responsible for FASD are not fully characterized. Our aim was to determine if ETOH can affect fetal human brain-derived neural progenitor cells (NPC). Methods:, Neural progenitor cells were isolated by positive selection from normal second trimester fetal human brains (n = 4) and cultured, for up to 72 hours, in mitogenic media containing 0, 1, 10, or 100 mM ETOH. From 48 to 72 hours in culture, neurospheres generated in these conditions were filmed using time-lapse video microscopy. At the end of 72 hours, neurosphere diameter and roundness were measured using videographic software. Mitotic phase analysis of cell-cycle activity and apoptotic cell count were also performed at this time, by flow cytometry using propidium iodide (PI) staining. Real-time PCR was used to estimate expression of genes associated with cell adhesion pathways. Results:, Neurosphere diameter correlated positively (r = 0.87) with increasing ETOH concentrations. There was no significant difference in cell-cycle activity and no significant increase in apoptosis with increasing ETOH concentrations. Time-lapse video microscopy showed that ETOH (100 mM) reduced the time for neurosphere coalescence. Real-time PCR analysis showed that ETOH significantly altered the expression of genes involved in cell adhesion. There was an increase in the expression of , and , Laminins 1, , Integrins 3 and 5, Secreted phosphoprotein1 and Sarcoglycan ,. No change in the expression of , Actin was observed while the expression of , Integrin 2 was significantly suppressed. Conclusions:, ETOH had no effect on NPC apoptosis but, resulted in more rapid coalescence and increased volume of neurospheres. Additionally, the expression of genes associated with cell adhesion was significantly altered. ETOH induced changes in NPC surface adhesion interactions may underlie aspects of neurodevelopmental abnormalities in FASD. [source] Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezersNEW PHYTOLOGIST, Issue 1 2010Hannie S. Van Der Honing Summary ,,Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. ,,Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. ,,After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. ,,Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture. [source] Breast Intracystic Papillary Carcinoma: An UpdateTHE BREAST JOURNAL, Issue 6 2009Julien Calderaro Abstract:, Intracystic papillary carcinoma (IPC), a breast tumor mainly occuring in the elderly, has long been considered as a variant of ductal carcinoma in situ (DCIS). This is now debated since metastatic cases have been reported. In this study, surgical pieces of 20 IPCs were reassessed, and markers of myopepithelial layer (p63, CD10 and Smooth Muscle Actin) as well as estrogen receptors (ER) and progesterone receptors (PgR) and C-erb-B2 oncoprotein expression were systematically performed and quantified. In 10 cases, an associated unequivocal invasive component was found. In all 20 cases, no myoepithelial layer was found. Eighteen tumors were ER positive, 14 were PgR positive. Moreover, none of the tumors over-expressed C-erb-B2 oncoprotein. Therefore this study showed that in all cases of IPC there were microscopic features of invasive carcinoma despite good clinical prognostic indicators, and that precise characterization of tumors requires extensive paraffin embedding of surgical pieces. [source] Actin-Based Motility in the Net Slime Mould Labyrinthula: Evidence for the Role of Myosin in Gliding MovementTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2005TERENCE M. PRESTON Abstract. In contrast to crawling movement (e.g. in amoebae and tissue cells) the other major class of substratum-associated motility in eukaryotes, gliding, has received relatively little attention. The net slime mold Labyrinthula provides a useful laboratory model for studying this process since it exhibits a particular kind of gliding in its plasmodial stage. Here nucleated spindle cells glide along self-established cytoplasmic trackways in a predominantly unidirectional manner, at 1,2 ,m/s. These trackways, upon which gliding is dependent, are held by filopodial tethers some distance off the well-developed reticulopodial mesh anchoring the plasmodium onto the substratum. Reflection interference microscopy resolves this matrix in live plasmodia. The axially disposed cytoskeletal elements of the trackways are revealed by rhodamine-labelled phalloidin to be rich in F-actin. A weft of peripheral, rapidly extending filopodia (50 ,m/min) typifies the expanding regions of the plasmodium. Here spindle cells are recruited before emigrating into newly differentiated trackways. Immunoblotting whole plasmodia or a sucrose-soluble cytoplasmic extract reveals a single actin-positive band of Mr 48 kDa. Polyclonal antibodies to two distinct myosin peptide sequences identify a single myosin HC (Mr 96 kDa) in immunoblots. Gliding was reversibly blocked by 10 mM 2,3-butanedione-2-monoxime, a myosin ATPase inhibitor, but it was insensitive to the actin-binding drugs cytochalasin D and phalloidin. We suggest that the force (>50 pN) for gliding motility results from interaction of myosin molecules, associated with the spindle cells, with trackway F-actin via the bothrosomes. [source] The Immunohistochemical Localization of Desmin and Smooth Muscle Actin in the Ovary of the African Giant Rat (Cricetomys gambianus) During the Oestrous CycleANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2010M.-C. Madekurozwa Summary The aim of this study was to describe the distribution of smooth muscle actin and desmin immunopositive cells in the ovary of the giant rat. In addition, the study describes the morphological changes in the ovary of this species during the oestrous cycle. Healthy secondary and tertiary follicles dominated the ovary during pro-oestrus and oestrus. The theca externa of the tertiary follicles was immunopositive for smooth muscle actin, but immunonegative for desmin. Oestrus was also characterized by the presence of corpora haemorrhagica, which had an outer layer of smooth muscle actin immunopositive cells. Differentiating corpora lutea were observed during metoestrus. A further notable feature of the ovary during metoestrus was the presence of numerous atretic secondary and tertiary follicles. In the later stages of atresia, the follicles were infiltrated by desmin and smooth muscle actin immunopositive cells. Dioestrus was characterized by the presence of non-regressing and regressing corpora lutea. Immunostaining for smooth muscle actin was demonstrated in the enclosing layer of the corpora lutea, as well as in the tunica media of blood vessels within the corpora lutea. The results of this study have shown that morphological changes in the ovary of the giant rat during the oestrus cycle are similar to those of laboratory rodents. Furthermore, the results of the immunohistochemical study indicate that the perifollicular distribution of desmin and smooth muscle actin cells changes during follicular development and atresia. [source] Genetic connections of the actin cytoskeleton and beyond,BIOESSAYS, Issue 5 2007Piergiorgio Percipalle Actin is a key protein in numerous cellular functions. One recent study has identified a large set of genes, associated with the actin cytoskeleton, which could be grouped into a wide spectrum of cytoplasmic and nuclear functions, such as protein biosynthesis and gene transcription.1 Deletions of many of the identified genes affected cellular actin organization,1 suggesting a functional link between different actin fractions probably regulated through changes in actin dynamics. The data are very exciting; speculations on the crosstalk between cytoplasmic and nuclear actin fractions in different cellular contexts may help placing the results in perspective to further understand how actin-mediated signalling affects cellular functions, such as gene expression. BioEssays 29:407,411, 2007. © 2007 Wiley Periodicals, Inc. [source] Proteomics of Caenorhabditis elegans over-expressing human , -synuclein analyzed by fluorogenic derivatization,liquid chromatography/tandem mass spectrometry: identification of actin and several ribosomal proteins as negative markers at early Parkinson's disease stagesBIOMEDICAL CHROMATOGRAPHY, Issue 3 2008Tomoko Ichibangase Abstract It has been known that the over-expression of , -synuclein, the main protein of Lewy bodies in Parkinson's disease (PD), leads to neurodegeneration in PD models. In this study, the changes in protein expression between the transgenic over-expressing human , -synuclein wild type (, -synWT) and the control Caenorhabditis elegans were elucidated by fluorogenic derivatization,liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) proteome analysis, which is a highly selective, sensitive, repeatable and quantitative method for protein identification. Because the , -synuclein wild-type worms showed moderate levels of dopamine loss without overt behavioral abnormalities, it was suggested that the changes in proteins in the , -synWT are related in the sequence of the formation of Lewy bodies. Among more than 400 protein peaks detected, actin and several ribosomal proteins were identified for the first time as negative markers at early PD stages. Actin was suggested to be one of the important targets in the elucidation of the etiology of neuronal diseases such as PD or other synucleinopathies. Copyright © 2007 John Wiley & Sons, Ltd. [source] Use of Green Fluorescent Protein-Conjugated ,-Actin as a Novel Molecular Marker for in Vitro Tumor Cell Chemotaxis AssayBIOTECHNOLOGY PROGRESS, Issue 6 2000Louis Hodgson To study the dynamics of actin cytoskeleton rearrangement in living cells, an eukaryotic expression vector expressing a ,-actin-GFP fusion protein was generated. The expression construct when transfected into NIH3T3 fibroblast, A2058 human melanoma and 293T human embryonic kidney carcinoma cell lines expressed ,-actin-GFP fusion protein, which colocalized with endogenous cellular actin as determined by histoimmunofluorescence staining. The ,-actin-GFP was also observed to be reorganized in response to treatments with the chemoattractant type IV collagen. Cells extended pseudopodial protrusions and altered the morphology of their cortical structure in response to type IV collagen stimulation. More importantly, ,-actin-GFP accumulated in areas undergoing these dynamic cytoskeleton changes, indicating that ,-actin-GFP could participate in actin polymerization. Although ectopic expression of ,-actin-GFP lead to minor side effects on cell proliferation, these studies suggest that this strategy provides an alternative to the invasive techniques currently used to study actin dynamics and permits real-time visualization of actin rearrangements in response to environmental cues. [source] Actin and calponin expression in basal cell carcinomaBRITISH JOURNAL OF DERMATOLOGY, Issue 4 2004M-W. Lee No abstract is available for this article. [source] African swine fever virus induces filopodia-like projections at the plasma membraneCELLULAR MICROBIOLOGY, Issue 11 2006Nolwenn Jouvenet Summary When exiting the cell vaccinia virus induces actin polymerization and formation of a characteristic actin tail on the cytosolic face of the plasma membrane, directly beneath the extracellular particle. The actin tail acts to propel the virus away from the cell surface to enhance its cell -to-cell spread. We now demonstrate that African swine fever virus (ASFV), a member of the Asfarviridae family, also stimulates the polymerization of actin at the cell surface. Intracellular ASFV particles project out at the tip of long filopodia-like protrusions, at an average rate of 1.8 µm min,1. Actin was arranged in long unbranched parallel arrays inside these virus-tipped projections. In contrast to vaccinia, this outward movement did not involve recruitment of Grb2, Nck1 or N-WASP. Actin polymerization was not nucleated by virus particles in transit to the cell periphery, and projections were not produced when the secretory pathway was disrupted by brefeldin A treatment. Our results show that when ASFV particles reach the plasma membrane they induce a localized nucleation of actin, and that this process requires interaction with virus-encoded and/or host proteins at the plasma membrane. We suggest that ASFV represents a valuable new model for studying pathways that regulate the formation of filopodia. [source] Delayed embryonic development and impaired cell growth and survival in Actg1 null mice,CYTOSKELETON, Issue 9 2010Tina M. Bunnell Abstract Actins are among the most highly expressed proteins in eukaryotes and play a central role in nearly all aspects of cell biology. While the intricate process of development undoubtedly requires a properly regulated actin cytoskeleton, little is known about the contributions of different actin isoforms during embryogenesis. Of the six actin isoforms, only the two cytoplasmic actins, ,cyto - and ,cyto -actin, are ubiquitously expressed. We found that ,cyto -actin null (Actg1,/,) mice were fully viable during embryonic development, but most died within 48 h of birth due to respiratory failure and cannibalization by the parents. While no morphogenetic defects were identified, Actg1,/, mice exhibited stunted growth during embryonic and postnatal development as well as delayed cardiac outflow tract formation that resolved by birth. Using primary mouse embryonic fibroblasts, we confirm that ,cyto -actin is not required for cell migration. The Actg1,/, cells, however, exhibited growth impairment and reduced cell viability, defects which perhaps contribute to the stunted growth and developmental delays observed in Actg1,/, embryos. Since the total amount of actin protein was maintained in Actg1,/, cells, our data suggests a distinct requirement for ,cyto -actin in cell growth and survival. © 2010 Wiley-Liss, Inc. [source] Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cellsCONGENITAL ANOMALIES, Issue 1 2002Keiichi Fukuda ABSTRACT, We recently isolated a cardiomyogenic (CMG) cell line from murine bone marrow stroma, and in this paper characterize regenerated cardiomyocytes derived from adult mesenchymal stem cells at the molecular level. Stromal cells were immortalized, exposed to 5-azacytidine, and repeatedly screened for spontaneously beating cells. CMG cells began to beat spontaneously after 2 weeks, and beat synchronously after 3 weeks. They exhibited sinus-node-like or ventricular-cell-like action potentials. Analysis of the isoforms of contractile protein genes, such as of myosin and ,-actin, indicated that their phenotype was similar to that of fetal ventricular cardiomyocytes. The cells expressed Nkx2.5, GATA4, TEF-1, and MEF2-C mRNA before 5-azacytidine exposure, and MEF2-A and MEF2-D after exposure. CMG cells expressed ,1A, ,1B, and ,1D -adrenergic receptor mRNA prior to differentiation, and ,1, ,2 -adrenergic and M1, M2 -muscarinic receptors after acquiring the cardiomyocyte phenotype. Phenylephrine induced phosphorylation of ERK1/ 2, and the phosphorylation was inhibited by prazosin. Isoproterenol increased the cAMP level 38-fold and beating rate, cell motion, % shortening, and contractile velocity by 48%, 38%, 27%, and 51%, respectively, and the increases were blocked by CGP20712A (,1 -selective blocker). Car-bachol increased IP3 32-fold, and the increase was inhibited by AFDX116 (M2 -selective blocker). These findings demonstrated that the regenerated cardiomyocytes were capable of responding to adrenergic and muscarinic stimulation. This new cell line provides a model for the study of cardiomyocyte transplantation. [source] Different adaptations of alpha-actinin isoforms to exercise training in rat skeletal musclesACTA PHYSIOLOGICA, Issue 3 2009Y. Ogura Abstract Aim:, Alpha (,)-actinins are located in the skeletal muscle Z-line and form actin,actin cross-links. Mammalian skeletal muscle has two isoforms: ,-actinin-2 and ,-actinin-3. However, the response of ,-actinin to exercise training is little understood. Therefore, the current study examined the effects of exercise training on the expression level of two ,-actinin isoforms in skeletal muscles. Methods:, Twelve male Wistar rats were assigned randomly to a control (C; n = 6) or exercise training (T; n = 6) group. After T animals were trained on an animal treadmill for 9 weeks, ,-actinin-2 and ,-actinin-3 levels in the plantaris, white and red gastrocnemius muscles were analysed. In addition, changes in the myosin heavy chain (MyHC) composition were assessed, and muscle bioenergetic enzyme activities were measured. Results:, Results show that exercise training increased ,-actinin-2 expression levels in all muscles (P < 0.05). However, no significant difference was found in ,-actinin-3 expression levels between C and T animals. Subsequent MyHC analyses of all muscle showed an MyHC shift with direction from IIb to IIa. Furthermore, enzymatic analysis revealed that exercise training improved enzyme activities related to aerobic metabolism. Conclusion:, The results of this study demonstrate that exercise training alters the expression level of ,-actinin at the isoform level. Moreover, the increase in expression levels of ,-actinin-2 is apparently related to alteration of skeletal muscle: its aerobic capacity is improved. [source] The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils,ACTA PHYSIOLOGICA, Issue 1 2009N. Damann Abstract Aim:, The role of the calcium-conducting ion channel transient receptor potential canonical 6 (TRPC6) in macrophage inflammatory protein-2 (MIP-2) induced migration of mouse neutrophils was investigated. Methods:, Neutrophil granulocytes isolated from murine bone marrow of wild-type (TRPC6+/+) and TRPC6 knockout (TRPC6,/,) mice were tested for the presence of TRPC6 channel expression using quantitative real-time polymerase chain reactions and immunocytochemistry. The effect of different stimuli (e.g. MIP-2, 1-oleoyl-2-acetyl-sn-glycerol, formyl-methionyl-leucyl-phenylalanin) on migration of isolated neutrophils was tested by two-dimensional (2D) migration assays, phalloidin staining and intracellular calcium imaging. Results:, We found that neutrophil granulocytes express TRPC6 channels. MIP-2 induced fast cell migration of isolated neutrophils in a 2D cell-tracking system. Strikingly, MIP-2 was less potent in neutrophils derived from TRPC6,/, mice. These cells showed less phalloidin-coupled fluorescence and the pattern of cytosolic calcium transients was altered. Conclusions:, We describe in this paper for the first time a role for transient receptor potential (TRP) channels in migration of native lymphocytes as a new paradigm for the universal functional role of TRPs. Our data give strong evidence that TRPC6 operates downstream to CXC-type Gq -protein-coupled chemokine receptors upon stimulation with MIP-2 and is crucial for the arrangement of filamentous actin in migrating neutrophils. This is a novel cell function of TRP channel beyond their well-recognized role as universal cell sensors. [source] Cell blocks allow reliable evaluation of expression of basal (CK5/6) and luminal (CK8/18) cytokeratins and smooth muscle actin (SMA) in breast carcinomaCYTOPATHOLOGY, Issue 4 2010W. D. Delgallo W. D. Delgallo, J. R. P. Rodrigues, S. P. Bueno, R. M. Viero and C. T. Soares Cell blocks allow reliable evaluation of expression of basal (CK5/6) and luminal (CK8/18) cytokeratins and smooth muscle actin (SMA) in breast carcinoma Objective:, Gene expression studies have revealed several molecular subtypes of breast carcinoma with distinct clinical and biological behaviours. DNA microarray studies correlated with immunohistochemical profiling of breast carcinomas using cytokeratin (CK) markers, Her2/neu, oestrogen receptor (ER), and basal myoepithelial cell markers have identified five breast tumour subtypes: (i) luminal A (ER+; Her2/neu,), (ii) luminal B (ER+; Her2/neu+), (iii) Her2 overexpression (ER,; Her2/neu+), (iv) basal-like (ER,; Her2/neu,, CK5/6 and 14+), and (v) negative for all markers. Luminal carcinomas express cytokeratins in a luminal pattern (CK8/18), and the basal-like type expresses CK5/6 and CK14 or basal epithelial cell markers. CK5/6, CK8/18, and smooth muscle actin (SMA) expression were assessed in cell blocks and compared with expression in surgical specimens. Methods:, Sixty-two cases of breast carcinoma diagnosed by fine needle aspiration cytology with cell blocks and available surgical specimens were included. Cell blocks containing at least 10 high-power fields each with at least 10 tumour cells and surgical specimens were immunostained for CK5/6, CK8/18 and SMA. Results:, Percentage sensitivity, specificity, positive predictive value, negative predictive value and accuracy were, respectively, 77, 100, 100, 92 and 94 for CK5/6; 98, 66, 96, 80 and 95 for CK8/18; and 92, 96, 85, 98 and 95 for SMA. Conclusion:, The identification of CK5/6, CK8/18 and SMA by immunohistochemistry in cell blocks can be a reliable method that yields results close to those obtained in surgical specimens, and can contribute to the classification of breast carcinomas with luminal and basal expression patterns, providing helpful information in the choice of treatment and in the evaluation of prognostic and predictive factors. [source] The actin gene family: Function follows isoform,CYTOSKELETON, Issue 10 2010Benjamin J. Perrin Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells. © 2010 Wiley-Liss, Inc. [source] Force propagation and force generation in cells,CYTOSKELETON, Issue 9 2010Oliver Jonas Abstract Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. © 2010 Wiley-Liss, Inc. [source] Delayed embryonic development and impaired cell growth and survival in Actg1 null mice,CYTOSKELETON, Issue 9 2010Tina M. Bunnell Abstract Actins are among the most highly expressed proteins in eukaryotes and play a central role in nearly all aspects of cell biology. While the intricate process of development undoubtedly requires a properly regulated actin cytoskeleton, little is known about the contributions of different actin isoforms during embryogenesis. Of the six actin isoforms, only the two cytoplasmic actins, ,cyto - and ,cyto -actin, are ubiquitously expressed. We found that ,cyto -actin null (Actg1,/,) mice were fully viable during embryonic development, but most died within 48 h of birth due to respiratory failure and cannibalization by the parents. While no morphogenetic defects were identified, Actg1,/, mice exhibited stunted growth during embryonic and postnatal development as well as delayed cardiac outflow tract formation that resolved by birth. Using primary mouse embryonic fibroblasts, we confirm that ,cyto -actin is not required for cell migration. The Actg1,/, cells, however, exhibited growth impairment and reduced cell viability, defects which perhaps contribute to the stunted growth and developmental delays observed in Actg1,/, embryos. Since the total amount of actin protein was maintained in Actg1,/, cells, our data suggests a distinct requirement for ,cyto -actin in cell growth and survival. © 2010 Wiley-Liss, Inc. [source] Actin on DNA,An ancient and dynamic relationship,CYTOSKELETON, Issue 8 2010Kari-Pekka Skarp Abstract In the cytoplasm of eukaryotic cells the coordinated assembly of actin filaments drives essential cell biological processes, such as cell migration. The discovery of prokaryotic actin homologues, as well as the appreciation of the existence of nuclear actin, have expanded the scope by which the actin family is utilized in different cell types. In bacteria, actin has been implicated in DNA movement tasks, while the connection with the RNA polymerase machinery appears to exist in both prokaryotes and eukaryotes. Within the nucleus, actin has further been shown to play a role in chromatin remodeling and RNA processing, possibly acting to link these to transcription, thereby facilitating the gene expression process. The molecular mechanism by which actin exerts these newly discovered functions is still unclear, because while polymer formation seems to be required in bacteria, these species lack conventional actin-binding proteins to regulate the process. Furthermore, although the nucleus contains a plethora of actin-regulating factors, the polymerization status of actin within this compartment still remains unclear. General theme, however, seems to be actin's ability to interact with numerous binding partners. A common feature to the novel modes of actin utilization is the connection between actin and DNA, and here we aim to review the recent literature to explore how this connection is exploited in different contexts. [source] Novel interactors and a role for supervillin in early cytokinesis,CYTOSKELETON, Issue 6 2010Tara C. Smith Abstract Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle. © 2010 Wiley-Liss, Inc. [source] Susceptibility of isolated myofibrils to in vitro glutathionylation: Potential relevance to muscle functions,CYTOSKELETON, Issue 2 2010Chiara Passarelli Abstract In this study we investigated the molecular mechanism of glutathionylation on isolated human cardiac myofibrils using several pro-glutathionylating agents. Total glutathionylated proteins appeared significantly enhanced with all the pro-oxidants used. The increase was completely reversed by the addition of a reducing agent, demonstrating that glutathione binding occurs by a disulfide and that the process is reversible. A sensitive target of glutathionylation was ,-actin, showing a different reactivity to the several pro-glutathionylating agents by ELISA. Noteworthy, myosin although highly sensitive to the in vitro glutathionylation does not represent the primary glutathionylation target in isolated myofibrils. Light scattering measurements of the glutathionylated ,-actin showed a slower polymerisation compared to the non-glutathionylated protein and force development was depressed after glutathionylation, when the myofibrils were mounted in a force recording apparatus. Interestingly, confocal laser scanning microscopy of cardiac cryosections indicated, for the first time, the constitutive glutathionylation of ,-cardiac actin in human heart. Due to the critical location of ,-actin in the contractile machinery and to its susceptibility to the oxidative modifications, glutathionylation may represent a mechanism for modulating sarcomere assembly and muscle functionality under patho-physiological conditions in vivo. © 2009 Wiley-Liss, Inc. [source] A FERM domain in a class XIV myosin interacts with actin and tubulin and localizes to the cytoskeleton, phagosomes, and nucleus in Tetrahymena thermophila,CYTOSKELETON, Issue 2 2010Michael Gotesman Abstract Previous studies have shown that Myo1(myosin class XIV) localizes to the cytoskeleton and is involved in amitosis of the macronucleus and trafficking of phagosomes. Myo1 contains a FERM domain that could be a site for interaction between Myo1 and the cytoskeleton. Here, we explore the function of FERM by investigating its cytoskeleton binding partners and involvement in localization of Myo1. Alignment of Myo1 FERM with a talin actin-binding sequence, a MAP-2 tubulin-binding sequence, the radixin FERM dimerization motif, and the SV40 nuclear localization sequence (NLS) revealed putative actin- and tubulin-binding sequences, a putative FERM dimerization motif, and NLS-like sequences in both the N-terminal and C-terminal regions of Myo1 FERM. Alignment of Myo1 with an ERM C-terminal motif revealed a similar sequence in the Myo1 motor domain. GFP-FERM and two truncated FERM domains were separately expressed in Tetrahymena. GFP-FERM contained the entire Myo1 FERM. Truncated Myo1 FERM domains contained either the N-terminal or the C-terminal region of FERM and one putative sequence for actin-binding, one for tubulin-binding, a putative dimerization motif, and a NLS-like sequence. Actin antibody coprecipitated GFP-fusion polypeptides and tubulin from lysate of cells expressing GFP-fusions. Cosedimentation assays performed with either whole cell extracts or anti-actin immunoprecipitation pellets revealed that F-actin (independent of ATP) and microtubules cosedimented with GFP-fusion polypeptides. GFP-FERM localized to the cytoskeleton, phagosomes, and nucleus. Truncated GFP-FERM domains localized to phagosomes but not to the cytoskeleton or nucleus. © 2009 Wiley-Liss, Inc. [source] Isolation and partial purification of the Saccharomyces cerevisiae cytokinetic apparatus,CYTOSKELETON, Issue 1 2010Brian A. Young Abstract Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested,actin, myosin heavy and light chain, and IQGAP,as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis. © 2009 Wiley-Liss, Inc. [source] Actin-like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in Toxoplasma gondii,CYTOSKELETON, Issue 1 2010Jennifer L. Gordon Abstract Apicomplexan parasites, such as Toxoplasma gondii, rely on actin-based motility for cell invasion, yet conventional actin does not appear to be required for cell division in these parasites. Apicomplexans also contain a variety of actin-related proteins (Arps); however, most of these not directly orthologous to Arps in well-studied systems. We recently identified an apicomplexan-specific member of this family called Actin-Like Protein 1, (ALP1), which plays a role in the assembly of vesicular components recruited to the inner membrane complex (IMC) of daughter cells during cell division. In addition to its enrichment at daughter cell membranes, ALP1 is localized throughout the cytoplasm both diffusely distributed and concentrated in clusters that are detected by fluorescence microscopy, suggesting it forms complexes. Using quantitative optical imaging methods, including fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we demonstrated that ALP1 is a component of a large complex, and that it readily exchanges between diffusible and complex-bound forms. Sedimentation and density gradient analyses revealed that ALP1 is found in a freely soluble state as well as high molecular weight complexes. During cell division, ALP1 was dynamically associated with the IMC, suggesting it rapidly cycles between freely diffusible and complex forms during daughter cell assembly. © 2009 Wiley-Liss, Inc. [source] |