Home About us Contact | |||
Conformational Sampling (conformational + sampling)
Selected AbstractsProtein,protein docking with multiple residue conformations and residue substitutionsPROTEIN SCIENCE, Issue 6 2002David M. Lorber Abstract The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side-chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near-native complexes be distinguished from non-native complexes? Results from seven test systems suggest that the precalculated ensembles do include side-chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near-native complexes and also non-native complexes. When docked against the bound conformations of the receptors, the near-native complexes of the unbound ligand were always distinguishable from the non-native complexes. When docked against the unbound conformations of the receptors, the near-native dockings could usually, but not always, be distinguished from the non-native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near-native and non-native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near-native and non-native complexes. Allowing for receptor flexibility may further extend these results. [source] ,-Dynamics free energy simulation methodsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2009Jennifer L. Knight Abstract Free energy calculations are fundamental to obtaining accurate theoretical estimates of many important biological phenomena including hydration energies, protein-ligand binding affinities and energetics of conformational changes. Unlike traditional free energy perturbation and thermodynamic integration methods, ,-dynamics treats the conventional "," as a dynamic variable in free energy simulations and simultaneously evaluates thermodynamic properties for multiple states in a single simulation. In the present article, we provide an overview of the theory of ,-dynamics, including the use of biasing and restraining potentials to facilitate conformational sampling. We review how ,-dynamics has been used to rapidly and reliably compute relative hydration free energies and binding affinities for series of ligands, to accurately identify crystallographically observed binding modes starting from incorrect orientations, and to model the effects of mutations upon protein stability. Finally, we suggest how ,-dynamics may be extended to facilitate modeling efforts in structure-based drug design. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009 [source] Application of torsion angle molecular dynamics for efficient sampling of protein conformationsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2005Jianhan Chen Abstract We investigate the application of torsion angle molecular dynamics (TAMD) to augment conformational sampling of peptides and proteins. Interesting conformational changes in proteins mainly involve torsional degrees of freedom. Carrying out molecular dynamics in torsion space does not only explicitly sample the most relevant degrees of freedom, but also allows larger integration time steps with elimination of the bond and angle degrees of freedom. However, the covalent geometry needs to be fixed during internal coordinate dynamics, which can introduce severe distortions to the underlying potential surface in the extensively parameterized modern Cartesian-based protein force fields. A "projection" approach (Katritch et al. J Comput Chem 2003, 24, 254,265) is extended to construct an accurate internal coordinate force field (ICFF) from a source Cartesian force field. Torsion crossterm corrections constructed from local molecular fragments, together with softened van der Waals and electrostatic interactions, are used to recover the potential surface and incorporate implicit bond and angle flexibility. MD simulations of dipeptide models demonstrate that full flexibility in both the backbone ,/, and side chain ,1 angles are virtually restored. The efficacy of TAMD in enhancing conformational sampling is then further examined by folding simulations of small peptides and refinement experiments of protein NMR structures. The results show that an increase of several fold in conformational sampling efficiency can be reliably achieved. The current study also reveals some complicated intrinsic properties of internal coordinate dynamics, beyond energy conservation, that can limit the maximum size of the integration time step and thus the achievable gain in sampling efficiency. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1565,1578, 2005 [source] Structural analysis of an "open" form of PBP1B from Streptococcus pneumoniaePROTEIN SCIENCE, Issue 7 2006Andrew L. Lovering Abstract The class A PBP1b from Streptococcus pneumoniae is responsible for glycosyltransferase and transpeptidase (TP) reactions, forming the peptidoglycan of the bacterial cell wall. The enzyme has been produced in a stable, soluble form and undergoes time-dependent proteolysis to leave an intact TP domain. Crystals of this TP domain were obtained, diffracting to 2.2 Ĺ resolution, and the structure was solved by using molecular replacement. Analysis of the structure revealed an "open" active site, with important conformational differences to the previously determined "closed" apoenzyme. The active-site nucleophile, Ser460, is in an orientation that allows for acylation by ,-lactams. Consistent with the productive conformation of the conserved active-site catalytic residues, adjacent loops show only minor deviation from those of known acyl-enzyme structures. These findings are discussed in the context of enzyme functionality and the possible conformational sampling of PBP1b between active and inactive states. [source] Modeling of loops in protein structuresPROTEIN SCIENCE, Issue 9 2000András Fiser Abstract Comparative protein structure prediction is limited mostly by the errors in alignment and loop modeling. We describe here a new automated modeling technique that significantly improves the accuracy of loop predictions in protein structures. The positions of all nonhydrogen atoms of the loop are optimized in a fixed environment with respect to a pseudo energy function. The energy is a sum of many spatial restraints that include the bond length, bond angle, and improper dihedral angle terms from the CHARMM-22 force field, statistical preferences for the main-chain and side-chain dihedral angles, and statistical preferences for nonbonded atomic contacts that depend on the two atom types, their distance through space, and separation in sequence. The energy function is optimized with the method of conjugate gradients combined with molecular dynamics and simulated annealing. Typically, the predicted loop conformation corresponds to the lowest energy conformation among 500 independent optimizations. Predictions were made for 40 loops of known structure at each length from 1 to 14 residues. The accuracy of loop predictions is evaluated as a function of thoroughness of conformational sampling, loop length, and structural properties of native loops. When accuracy is measured by local superposition of the model on the native loop, 100, 90, and 30% of 4,, 8,, and 12,residue loop predictions, respectively, had <2 Ĺ RMSD error for the mainchain N, Ca, C, and O atoms; the average accuracies were 0.59 6 0.05, 1.16 6 0.10, and 2.61 6 0.16 Ĺ, respectively. To simulate real comparative modeling problems, the method was also evaluated by predicting loops of known structure in only approximately correct environments with errors typical of comparative modeling without misalignment. When the RMSD distortion of the main-chain stem atoms is 2.5 Ĺ, the average loop prediction error increased by 180, 25, and 3% for 4,, 8,, and 12,residue loops, respectively. The accuracy of the lowest energy prediction for a given loop can be estimated from the structural variability among a number of low energy predictions. The relative value of the present method is gauged by (1) comparing it with one of the most successful previously described methods, and (2) describing its accuracy in recent blind predictions of protein structure. Finally, it is shown that the average accuracy of prediction is limited primarily by the accuracy of the energy function rather than by the extent of conformational sampling. [source] |