Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Conductivity

  • ac conductivity
  • bulk conductivity
  • dark conductivity
  • dc conductivity
  • effective thermal conductivity
  • electric conductivity
  • electrical conductivity
  • electronic conductivity
  • film conductivity
  • good conductivity
  • heat conductivity
  • high conductivity
  • high electrical conductivity
  • high ionic conductivity
  • high proton conductivity
  • high thermal conductivity
  • highest conductivity
  • horizontal hydraulic conductivity
  • hydraulic conductivity
  • ion conductivity
  • ionic conductivity
  • lattice thermal conductivity
  • low conductivity
  • low lattice thermal conductivity
  • low thermal conductivity
  • lower thermal conductivity
  • maximum conductivity
  • metallic conductivity
  • microwave conductivity
  • n-type conductivity
  • optical conductivity
  • p-type conductivity
  • proton conductivity
  • saturated hydraulic conductivity
  • specific conductivity
  • thermal conductivity
  • unsaturated hydraulic conductivity
  • water conductivity

  • Terms modified by Conductivity

  • conductivity behavior
  • conductivity data
  • conductivity decrease
  • conductivity decreased
  • conductivity detection
  • conductivity detector
  • conductivity distribution
  • conductivity enhancement
  • conductivity increase
  • conductivity measurement
  • conductivity property
  • conductivity studies
  • conductivity value

  • Selected Abstracts


    ABSTRACT Electrical conductivity (EC) of cornstarch,water mixtures in the range 10:90 to 70:30 (w/w) was studied as a function of temperature. An external resistive heating system equipped with an electronic device capable of monitoring EC in real time was used and EC of the mixtures was measured while heated at a rate of 5C/min. Results showed that EC went through four different temperature-dependent stages (A, B, C and D). Stage B (41C to 64C) showed a lower EC increasing rate when compared with that of Stage A (from 25C to 41C), probably as a result of starch granule swelling. In Stage C (64C to 78C), EC behavior was found to be dependent on water content. When water content was more than 50%, the value for EC increased. On the other side, EC decreased when water content was less than 50%. Stage C was related to starch gelatinization, according to differential scanning calorimetry results obtained in this study. In Stage D (78C to 92C), a steady increase in EC was observed, probably as a result of the total solubilization of starch in water. It was concluded that Stage C in EC graphs corresponded to cornstarch gelatinization, so it might be possible to use EC monitoring as an alternative technique to measure cornstarch thermal characteristics with different contents of water. PRACTICAL APPLICATIONS Electrical conductivity can be used as an adequate technique to monitor gelatinization, granule swelling and phase change of starch as a function of temperature in corn starch,water mixtures with a wide range of water contents. With this technique, it is also possible to calculate important thermal parameters, such as the beginning and end of the gelatinization and the energy activation for the heating process of cornstarch. This can lead to a better design and control of important industrial corn processes such as alkaline cooking. [source]


    ABSTRACT In the present work, rice starch was studied by differential scanning calorimetry (DSC) and electrical conductivity as a function of temperature. The gelatinization temperature was calculated using both methods. Three stages of electrical conductivity were found. When the logarithm of conductivity was plotted versus temperature, the data have been well adjusted to the linear equation, indicating that a model for conductivity may be created using an Arrhenius-type expression to obtain kinetic parameters such as onset, peakset, endset temperatures and gelatinization energy (Eg). The conductivity Eg was calculated and compared to the enthalpy H calculated from the DSC data. It was found that Eg and enthalpy are similar processes. We conclude that electrical conductivity is an alternative method for the study of starch,water mixtures. PRACTICAL APPLICATIONS This research provides a new methodology to obtain kinetic parameters such as temperature of the beginning, medium and ending of gelatinizaiton, which are important for determining the cooking range needed to obtain desired characteristics in a processed starch-containing food. [source]


    ABSTRACT The effects of field strength, soluble solids (from 14 to 59.5 °Brix) and particle size (using two size distributions) on electrical conductivity were investigated. Electrical conductivity increased with temperature for all the products and conditions tested following linear or quadratic relations. Electrical conductivity was found to vary greatly between strawberry-based products. an increase of electrical conductivity with field strength was obvious for fresh strawberries and strawberry jelly but not for strawberry pulp, probably due to the presence of texturizing agents. This parameter decreases with the increase of solids and sugar content. For some of the formulations tested (solid content over 20% w/w and over 40 °Brix) a different design of ohmic heater may be necessary because of the low values of electrical conductivity. [source]


    Vikram M. Vyas
    ABSTRACT: The Kirkwood-Cohansey aquifer has been identified as a critical source for meeting existing and expected water supply needs for southern New Jersey. Several contaminated sites exist in the region; their impact on the aquifer has to be evaluated using ground water flow and transport models. Ground water modeling depends on availability of measured hydrogeologic data (e.g., hydraulic conductivity, for parameterization of the modeling runs). However, field measurements of such critical data have inadequate spatial density, and their locations are often clustered. The goal of this study was to research, compile, and geocode existing data, then use geostatistics and advanced mapping methods to develop a map of horizontal hydraulic conductivity for the Kirkwood-Cohansey aquifer. Spatial interpolation of horizontal hydraulic conductivity measurements was performed using the Bayesian Maximum Entropy (BME) Method implemented in the BMELib code library. This involved the integration of actual measurements with soft information on likely ranges of hydraulic conductivity at a given location to obtain estimate maps. The estimation error variance maps provide an insight into the uncertainty associated with the estimates, and indicate areas where more information on hydraulic conductivity is required. [source]

    n-Type Doping of Organic Thin Films Using Cationic Dyes,

    A. Werner
    Abstract We present an approach to stable n-type doping of organic matrices using organic dopants. In order to circumvent stability limitations inherent to strong organic donors, we produce the donor from a stable precursor compound in situ. As an example, the cationic dye pyronin B chloride is studied as a dopant in a 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) matrix. Conductivities of up to 1.9,×,10,4,S,cm,1 are obtained for doped NTCDA, two orders of magnitude higher than the conductivity of NTCDA doped with bis(ethylenedithio)-tetrathiafulvalene as investigated previously, and four orders of magnitude higher than nominally undoped NTCDA films. Field-effect measurements are used to prove n-type conduction and to study the doping effect further. The findings are interpreted using a model of transport in disordered solids using a recently published model. Combined FTIR, UV-vis, and mass spectroscopy investigations suggest the formation of leuco pyronin B during sublimation of pyronin B chloride. [source]

    Electrical Conductivities of (CeO2)1,x(Y2O3)x Thin Films

    Chunyan Tian
    Electrical properties of CeO2 thin films of different Y2O3 dopant concentration as prepared earlier were studied using impedance spectroscopy. The ionic conductivities of the films were found to be dominated by grain boundaries of high conductivity as compared with that of the bulk ceramic of the same dopant concentration sintered at 1500°C. The film grain-boundary conductivities were investigated with regard to grain size, grain-boundary impurity segregation, space charge at grain boundaries, and grain-boundary microstructures. Because of the large grain boundary and surface area in thin films, the impurity concentration is insufficient to form a continuous highly resistive Si-rich glassy phase at grain boundaries, such that the resistivity associated with space-charge layers becomes important. The grain-boundary resistance may originate from oxygen-vacancy-trapping near grain boundaries from space-charge layers. High-resolution transmission electron microscopy coupled with a trans-boundary profile of electron energy loss spectroscopy gives strong credence to the space-charged layers. Since the conductivities of the films were observed to be independent of crystallographic texture, the interface misorientation contribution to the grain-boundary resistance is considered to be negligible with respect to those of the impurity layer and space-charge layers. [source]

    Polyelectrolyte-in-Ionic-Liquid Electrolytes

    Churat Tiyapiboonchaiya
    Abstract Novel polymer electrolyte materials based on a polyelectrolyte-in-ionic-liquid principle are described. A combination of a lithium 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSLi) and N,N,-dimethylacrylamide (DMMA) are miscible with the ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA). EMIDCA has remarkably high conductivity (,,2,·,10,2 S,·,cm,1) at room temperature and acts as a good solvating medium for the polyelectrolyte. At compositions of AMPSLi less than or equal to 75 mol-% in the copolymer (P(AMPSLi- co -DMAA)), the polyelectrolytes in EMIDCA are homogeneous, flexible elastomeric gel materials at 10,,,15 wt.-% of total polyelectrolyte. Conductivities higher than 8,·,10,3 S,·,cm,1 at 30,°C have been achieved. The effects of the monomer composition, polyelectrolyte concentration, temperature and lithium concentration on the ionic conductivity have been studied using thermal and conductivity analysis, and pulsed field gradient nuclear magnetic resonance techniques. Comparison of the measured and calculated lithium conductivity at 30,°C. [source]

    Syntheses, Structures, Ionic Conductivities, and Magnetic Properties of Three New Transition-Metal Borophosphates Na5(H3O){M3II [B3O3(OH)] 3(PO4)6}×2H2O (MII: Mn, Co, Ni).

    CHEMINFORM, Issue 29 2006
    Miao Yang
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]

    Synthesis, Structure, Conductivity, and Calculated Nonlinear Optical Properties of Two Novel Bis(triphenylphosphane)copper(I) Dithiocarbamates,

    Abhinav Kumar
    Abstract A centrosymmetric binuclear [{Cu(PPh3)2}2(piperzdtc)] (1) [piperzdtc2, = piperazinebis(dithiocarbamate)] and another mononuclear [{Cu(PPh3)2}(BzMedtc)] (2) (BzMedtc, = N -benzyl- N -methyldithiocarbamate) complex have been synthesized and characterized by elemental analyses, IR, 1H, 13C, and 31P NMR spectroscopy and by X-ray crystallography. The nonlinear optical properties of 2 have been investigated by density functional theory and its electronic absorption bands have been assigned by time-dependent density functional theory (TD-DFT). Both complexes are weakly conducting (,rt , 10,8 S,cm,1) because of the absence of M···S/S···S intermolecular stacking and exhibit semiconductivity with band gaps of 0.94 and 1.24 eV, respectively.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]

    Influence of Solid Phase Conductivity and Cellular Structure on the Heat Transfer Mechanisms of Cellular Materials: Diverse Case Studies,

    Eusebio Solórzano
    An analysis on the influence of solid phase thermal conductivity and cellular structure on the heat transfer mechanisms (HTMs) by means of studding diverse case studies combining theoretical and experimental data. The radiation and conduction mechanisms have been analyzed for cellular materials based on insulating and conductive matrixes using similar concepts and models for both types of materials. [source]

    Lattice Monte Carlo and Experimental Analyses of the Thermal Conductivity of Random-Shaped Cellular Aluminum

    Thomas Fiedler
    The effective thermal conductivity of open- and closed-cell aluminium foams with stochastic pore morphologies has been determined by numerical, analytical and experimental methods. A three dimensional analysis technique has been used where numerical calculation models are generated based on 3D computed tomographic (CT) reconstructions. The resulting three dimensional grid models are used for thermal Lattice Monte Carlo (LMC) analyses. The second part of this paper addresses experimental measurements of open-cell M-pore® and closed-cell Alporas® cellular aluminium. Finally, results obtained using both approaches are compared to classical analytic predictions. [source]

    Combined Analytical and Phonon-Tracking Approaches to Model Thermal Conductivity of Etched and Annealed Nanoporous Silicon

    Jaona Randrianalisoa
    A combination of analytical and phonon-tracking approaches is proposed to predict thermal conductivity of porous nanostructured thick materials. The analytical approach derives the thermal conductivity as function of the intrinsic properties of the material and properties characterizing the phonon interaction with pore walls. [source]

    Thermal Conductivity of Cellular Metals Measured by the Transient Plane Source Method,

    E. Solórzano
    The thermal conductivity of a collection of cellular metals has been measured by the Transient Plane Source (TPS) method. Using this method, it has been possible to cover different volumes of selected samples and to study their in-homogeneities from their surface to their inner part. Additionally, these samples have been characterized by tomography. With the TPS method, in combination with tomography, it has been possible to analyse the in-homogeneity of the samples as well as to characterize the thermal conductivity of a single in-homogeneous sample as a complete collection of different porosity specimens. This is the corrected version of the paper by Solórzano et al., Adv. Eng. Mater.2008, 10, 371, which was unfortunately published in an uncorrected version. [source]

    Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites

    Cheng Yang
    Abstract The electrical conductivity of a silver microflake-filled conductive composites is dramatically improved after a filler surface treatment. By a simple iodine solution treatment, nonstoichiometric silver/silver iodide nanoislands form on the silver filler surface. Evidence of the decrease of surface silver oxide species is provided by TOF-SIMS and the redox property of the nanoclusters is studied using cyclic voltammetry and TOF-SIMS depth profile analyses. The redox property of the nanoclusters on silver flakes helps enhance the electrical conductivity of the conductive composites. The electrical resistivity of the improved conductive composites is measured by four-point probe method; the reliability of the printed thin film resistors is evaluated by both the 85 °C/85% relative humidity moisture exposure and the ,40 , 125 °C thermal cycling exposure. The conductive composite printed radio frequency identification (RFID) antennas with 27.5 wt% of the modified silver flake content show comparable performance in the RFID tag read range versus copper foil antennas, and better than those commercial conductive adhesives that require much higher silver content (i.e., 80 wt%). This work suggests that a surface chemistry method can significantly reduce the percolation threshold of the loading level of the silver flakes and improve the electrical conductivity of an important printed electronic passive component. [source]

    Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites

    Cheng Yang
    Abstract The electrical conductivity of a silver microflake-filled conductive composites is dramatically improved after a filler surface treatment. By a simple iodine solution treatment, nonstoichiometric silver/silver iodide nanoislands form on the silver filler surface. Evidence of the decrease of surface silver oxide species is provided by TOF-SIMS and the redox property of the nanoclusters is studied using cyclic voltammetry and TOF-SIMS depth profile analyses. The redox property of the nanoclusters on silver flakes helps enhance the electrical conductivity of the conductive composites. The electrical resistivity of the improved conductive composites is measured by four-point probe method; the reliability of the printed thin film resistors is evaluated by both the 85 °C/85% relative humidity moisture exposure and the ,40 , 125 °C thermal cycling exposure. The conductive composite printed radio frequency identification (RFID) antennas with 27.5 wt% of the modified silver flake content show comparable performance in the RFID tag read range versus copper foil antennas, and better than those commercial conductive adhesives that require much higher silver content (i.e., 80 wt%). This work suggests that a surface chemistry method can significantly reduce the percolation threshold of the loading level of the silver flakes and improve the electrical conductivity of an important printed electronic passive component. [source]

    Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia

    Michael Sillassen
    Abstract Very high lateral ionic conductivities in epitaxial cubic yttria-stabilized zirconia (YSZ) synthesized on single-crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order ,1 ,,1cm,1) are observed at 500,°C for 58-nm-thick films on MgO. The results indicate a superposition of two parallel contributions , one due to bulk conductivity and one attributable to conduction along the film,substrate interface. Interfacial effects dominate the conductivity at low temperatures (<350,°C), showing more than three orders of magnitude enhancement compared to bulk YSZ. At higher temperatures, a more bulk-like conductivity is observed. The films have a negligible grain-boundary network, thus ruling out grain boundaries as a pathway for ionic conduction. The observed enhancement in lateral ionic conductivity is caused by a combination of misfit dislocation density and elastic strain in the interface. These very high ionic conductivities in the temperature range 150,500,°C are of great fundamental importance but may also be technologically relevant for low-temperature applications. [source]

    Microencapsulation: Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts (Adv. Funct.

    Rupture of a mixture of core,shell microcapsules containing tetrathiafulvalene (TTF) and, separately, tetracyanoquinodimethane (TCNQ) in solution results in the formation of the conductive TTF-TCNQ charge-transfer salt. On page 1721, J. S. Moore and co-workers used this initially non-conductive microcapsule system to restore electrical conductivity to a damaged gold circuit upon microcapsule rupture. Illustration provided by Alex Jerez. [source]

    Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts

    Susan A. Odom
    Abstract The formation of the conductive TTF-TCNQ (tetrathiafulvalene,tetracyanoquinodimethane) charge-transfer salt via rupture of microencapsulated solutions of its individual components is reported. Solutions of TTF and TCNQ in various solvents are separately incorporated into poly(urea-formaldehyde) core,shell microcapsules. Rupture of a mixture of TTF-containing microcapsules and TCNQ-containing microcapsules results in the formation of the crystalline salt, as verified by FTIR spectroscopy and powder X-ray diffraction. Preliminary measurements demonstrate the partial restoration of conductivity of severed gold electrodes in the presence of TTF-TCNQ derived in situ. This is the first microcapsule system for the restoration of conductivity in mechanically damaged electronic devices in which the repairing agent is not conductive until its release. [source]

    Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature

    FIRE AND MATERIALS, Issue 5 2006
    Bijan Adl-Zarrabi
    Abstract The transient plane source (TPS) method is shown to be very promising for determining thermal properties of materials at room temperature as well as temperatures up to 700°C. To investigate the applicability of the method it has been used in the study for determining thermal properties of wood (spruce) and concrete. Conductivity (,) and diffusivity (,) were determined simultaneously. The thermal properties thus obtained have been compared with some values found in literature. The paper also presents results where calculations using properties obtained with the TPS method are compared with fire test measurements. The results are very encouraging. Copyright © 2005 John Wiley & Sons, Ltd. [source]

    Hydrophilic Sparse Ionic Monolayer-Protected Metal Nanoparticles: Highly Concentrated Nano-Au and Nano-Ag "Inks" that can be Sintered to Near-Bulk Conductivity at 150,°C

    Bibin T. Anto
    Here, monolayer-protected gold and silver nanoparticles with extremely high solvent dispersibility (over 200,mg mL,1 in water and glycols) and low coalescence temperature (approximately 150,°C, measured by the percolation transition temperature Tp) are developed, to reach conductivities better than 1,×,105,S cm,1. These materials are suitable for inkjet and other forms of printing on substrates that may be solvent- and/or temperature-sensitive, such as for plastic electronics, and as bus lines for solar and lighting panels. This is achieved using a new concept of the sparse ionic protection monolayer. The metal nanoparticles are initially protected by a two-component mixed ligand shell comprising an ,-functionalized ionic ligand and a labile ligand. These are selectively desorbed to give a sparse shell of the ,-ionic ligands of ca. 25% coverage. Through a systematic study of different monolayer-protected Au nanoparticles using FTIR spectroscopy, supported by XPS and DSC, it is shown that Tp is not determined by thermodynamic size melting or by surface area effects, as previously thought, but by the temperature when ca. 80% of the dense monolayer is eliminated. Therefore, Tp depends on the thermal stability and packing density of the shell, rather than the size of the metal core, while the solubility characteristics depend strongly on the exposed terminal group. [source]

    Ceramic Membranes: Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity (Adv. Funct.

    The inside cover image showns a side view of a hydroxyapatite membrane with aligned crystal domains synthesized as described by Liu et al. on page 3941. The microstructure of the membrane is engineered to promote proton transport through orientation of the proton conducting paths. These novel structures have significantly higher proton conductivity than traditional hydroxyapatite ceramics and may offer improved performance in intermediate temperature fuel cells. [source]

    Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity

    Dongxia Liu
    Abstract A new approach to enhancing proton conductivity of ceramics is demonstrated by aligning proton conductive pathways and eliminating resistive grain boundaries. Hydroxyapatite (HAP) membranes are synthesized by multistage crystallization onto palladium. The synthesis involves three steps: electrochemical deposition of HAP seeds, secondary hydrothermal crystallization onto the seed layer to promote c -axis growth normal to the substrate, and tertiary hydrothermal crystallization to promote a- axis growth to fill the gaps between the aligned crystals. The c -axis alignment with crystal domains spanning the membrane thickness significantly enhances proton conduction since protons are primarily transported along the c -axes of HAP crystals. The novel HAP membranes display proton conductivity almost four orders of magnitude higher than traditional sintered HAP ceramics. The HAP membranes on palladium hydrogen membrane substrates hold promise for use in intermediate-temperature fuel cells, chemical sensors, and other devices. The synthesis approach presented may also be applied to other ion-conducting membrane materials to enhance transport properties. [source]

    Conductivity and Methanol Permeability of Nafion,Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles,

    FUEL CELLS, Issue 4 2009
    M. Casciola
    Abstract Gels of exfoliated ,-zirconium phosphate (ZrPexf) in dimethylformamide (DMF) were used to prepare Nafion/ZrPexf composite membranes with filler loadings up to 7,wt.-% by casting mixtures of Nafion 1100 solutions in DMF and suitable amounts of 2,wt.-% ZrP gels in DMF. TEM pictures showed that the ZrPexf particles had aspect ratio of at least 20. All samples were characterised by methanol permeability (P) and through-plane (,thp) and in-plane (,inp) conductivity measurements at 40,°C and 100% RH. The methanol permeability of Nafion membranes containing in situ grown ZrP particles with low aspect ratio (Nafion/ZrPisg) was also determined. The methanol permeability and the swelling behaviour of the composite membranes turned out to be strongly dependent on the filler morphology. As a general trend, both permeability and swelling decreased according to the sequence: Nafion/ZrPisg > Nafion > Nafion/ZrPexf. The maximum selectivity (,thp/P,=,1.4,×,105,S,cm,3,s) was found for the membrane filled with 1,wt.-% ZrPexf: this value is seven times higher than that of Nafion. For the Nafion/ZrPexf membranes, the ratio ,inp/,thp increases with the filler loading, thus indicating that the preferred orientation of the ZrP sheets is parallel to the membrane surface. [source]

    Polyaniline Entrapped in Silver: Structural Properties and Electrical Conductivity

    Guy Nesher
    Abstract By employing the new methodology of entrapment of organic molecules within metals, we demonstrate the ability to modify the conductivity of a metal by suitable polymer entrapment. Specifically, polyaniline (PANI) in two molecular weights was entrapped in silver at different concentrations and a comprehensive comparison was preformed for a range of the composite properties, characterized by XRD, SEM, BET, TGA, and density measurements. Pressed films were utilized to measure the electrical conductivity of the composites in order to study the PANI-silver interactions at the molecular level and to establish a correlation between the microscopic morphology and the film conduction. Such correlations have been identified, and are interpreted. This work extends the functional applications of the new metallic composites and offers insight on the polymer-metal molecular level interactions. [source]

    Analyzing Bank Filtration by Deconvoluting Time Series of Electric Conductivity

    GROUND WATER, Issue 3 2007
    Olaf A. Cirpka
    Knowing the travel-time distributions from infiltrating rivers to pumping wells is important in the management of alluvial aquifers. Commonly, travel-time distributions are determined by releasing a tracer pulse into the river and measuring the breakthrough curve in the wells. As an alternative, one may measure signals of a time-varying natural tracer in the river and in adjacent wells and infer the travel-time distributions by deconvolution. Traditionally this is done by fitting a parametric function such as the solution of the one-dimensional advection-dispersion equation to the data. By choosing a certain parameterization, it is impossible to determine features of the travel-time distribution that do not follow the general shape of the parameterization, i.e., multiple peaks. We present a method to determine travel-time distributions by nonparametric deconvolution of electric-conductivity time series. Smoothness of the inferred transfer function is achieved by a geostatistical approach, in which the transfer function is assumed as a second-order intrinsic random time variable. Nonnegativity is enforced by the method of Lagrange multipliers. We present an approach to directly compute the best nonnegative estimate and to generate sets of plausible solutions. We show how the smoothness of the transfer function can be estimated from the data. The approach is applied to electric-conductivity measurements taken at River Thur, Switzerland, and five wells in the adjacent aquifer, but the method can also be applied to other time-varying natural tracers such as temperature. At our field site, electric-conductivity fluctuations appear to be an excellent natural tracer. [source]

    Estimation of Hydraulic Conductivity in an Alluvial System Using Temperatures

    GROUND WATER, Issue 6 2004
    Article first published online: 9 OCT 200
    First page of article [source]

    In situ Mixing of Organic Matter Decreases Hydraulic Conductivity of Denitrification Walls in Sand Aquifers

    Gregory F. Barkle
    In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions. [source]

    Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina,

    H. Yamada
    Abstract The silver ionic conductivity in heterogeneous systems of AgBr:Al2O3 and AgI:Al2O3 is highly enhanced by utilizing mesoporous Al2O3 as the insulating phase. The highest Ag+ conductivity of 3.1,×,10,3,,,1,cm,1 (at 25,°C) has been obtained for the AgI:Al2O3 composite with an Al2O3 volume fraction of 0.3. For AgBr:Al2O3, the enhancement of the conductivity is satisfactorily explained in the framework of the ideal space-charge model, while in the case of AgI:Al2O3 stacking disorder is also considered to contribute to the ionic conductivity. [source]

    Near-Bulk Conductivity of Gold Nanowires as Nanoscale Interconnects and the Role of Atomically Smooth Interface

    ADVANCED MATERIALS, Issue 21 2010
    Kevin Critchley
    Atomically smooth gold nanowires with high aspect ratios are grown using the seeded growth process. This allows control of the diameter of the nanowires to a high degree of precision. Two and four-probe nanoscale transport measurements reveal that the nanowires have low resistivity. Only a small increase in resistivity is observed between diameters of 29,nm and 185,nm suggesting that surface scattering is only a small contribution. [source]

    Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity

    ADVANCED MATERIALS, Issue 20 2009
    L. Monica Veca
    Nanometer-thick 2D carbon structures ("carbon nanosheets") are processed from commercially available expanded graphite. These carbon nanosheets are then incorporated in various polymers to produce flexible nanocomposites that exhibit record-setting anisotropic thermal conductivities, which may prove highly valuable in many technological applications. [source]