Home About us Contact | |||
Condensed Chromatin (condensed + chromatin)
Selected AbstractsMyosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcriptionCYTOSKELETON, Issue 6 2008Maria Cristina S. Pranchevicius Abstract Nuclear actin and nuclear myosins have been implicated in the regulation of gene expression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser1650 MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine1650 and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser1650 MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser1650 MVa to nucleoli, as well as separating a fraction of phospho-ser1650 MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Partition of distinct chromosomal regions: negotiable border and fixed borderGENES TO CELLS, Issue 6 2004Akatsuki Kimura Chromosomes are partitioned into distinct functional regions. For example, heterochromatin regions consist of condensed chromatin and contain few transcriptionally active genes, whereas euchromatin regions are less condensed and majority of active genes reside in the euchromatin regions. Because distinct regions reside in each chromosome, borders are accordingly established between these regions. A prevailing view of the borders is that they are ,walls' that actively inhibit communication between distinct regions on chromosomes. Although little is known about the molecular bases of these walls, specific DNA elements are considered to recruit these walls to define the positions of the borders. We call the borders established with this mechanism as ,fixed borders'. Past studies have identified various insulators (boundary DNA elements) that have been suggested to recruit fixed borders to them. Another mechanism, which we introduce and focus on in this review, does not require walls recruited by specific DNA elements at the chromosomal borders. Instead, the borders are defined by a balance of opposing enzymatic activities located at the opposite sides of the resultant borders. We name these borders ,negotiable borders'. Here we review some of the recent progress in the field that offer valuable insight into mechanisms of establishing structural and functional borders on chromosomes. [source] Living without mitochondria: spermatozoa and spermatogenesis in two species of Urodasys (Gastrotricha, Macrodasyida) from dysoxic sedimentsINVERTEBRATE BIOLOGY, Issue 1 2007Maria Balsamo Abstract. The spermatozoa of two species of Macrodasyida (Gastrotricha), Urodasys anorektoxys and U. acanthostylis, show an ultrastructural organization diverging from one another and from other gastrotrichs: their main peculiarity is in the absence of mitochondria. In U. anorektoxys, the acrosome is a long, twisted column inserted into the nucleus, which is basally cylindrical, and the flagellum shows rows of peculiar, large globules parallel to the axonemal doublets. In U. acanthostylis, the acrosome is completely cork-screwed and surrounds the nucleus, and the tail shows columnar accessory fibers. At present, the absence of mitochondria in the mature sperm, and the peculiar fingerprint aspect of condensed chromatin are the only traits shared by the two species. The features of the spermatozoa of these two species of Urodasys widen the range of different models of gastrotrich spermatozoa, and place the genus in a peculiar position, from the spermatological point of view, within the Macrodasyida. The loss of mitochondria in mature spermatozoa is possibly related to either the dysoxic habitat of the two species or a peculiar fertilization mechanism. [source] Alteration of argyrophilic nucleolar organizer region associated (Ag-NOR) proteins in apoptosis-induced human salivary gland cells and human oral squamous carcinoma cellsJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 4 2001Yasuhiro Morimoto Abstract: The level of argyrophilic nucleolar organizer regions (AgNORs) and AgNOR-associated proteins (Ag-NOR proteins) varies with cell activity, including ribosomal biogenesis occurring in proliferating cells. Proteins associated with some AgNORs are detected by a specific silver staining. To investigate a possible relationship between apoptosis and the AgNORs or Ag-NOR proteins, we examined the changes of AgNORs and Ag-NOR proteins during apoptosis in a human salivary gland cell line, HSG cells, and a human oral squamous carcinoma cell line, SCC-25 cells. Apoptosis was induced by treatment of HSG and SCC-25 cells with okadaic acid. Proteins prepared from HSG and SCC-25 cells treated with varying concentrations of okadaic acid (OA) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by transferring to transfer membranes and staining for Ag-NOR proteins by modified Western blot analysis. Four major bands (110 kDa, 43 kDa, 39kDa, and 37 kDa) were detected in the proteins obtained from the control cells. The level of the 110-kDa protein decreased in the proteins prepared from OA-induced apoptotic cells; however, the reaction intensity of the other three bands was changed in apoptotic cells. An additional band of an 80-kDa Ag-NOR protein appeared and increased in the apoptotic cells. Cellular fractionation of HSG cells and SCC-25 cells was done with or without apoptotic induction. An 80-kDa Ag-NOR protein was detected in the nuclear fraction prepared from the apoptotic cells, while the 110-kDa protein decreased in the nuclear fraction of these cells. The 110-kDa Ag-NOR protein may be nucleolin (C23) as deduced from its AgNOR staining features, including molecular weight. The 80-kDa protein may be the cleavage product of the 110-kDa protein. In the cell-free apoptotic system, in which intact nuclei of HSG cells were incubated with the cytosol fraction of apoptotic HSG and SCC-25 cells, the 80-kDa Ag-NOR protein was detected in nuclei incubated with the cytosol fraction of apoptotic cells, while the level of the 110-kDa protein decreased. The changes of Ag-NOR proteins in nuclei prepared from SCC-25 cells incubated with cytosol fractions prepared from HSG and SCC-25 cells were identical to those of the HSG cells. The alternation of AgNORs in apoptosis-induced HSG cells was also examined using double staining with Hoechst 33342 and silver nitrate. Hoechst staining revealed typical apoptotic nuclei, which exhibited highly fluorescent condensed chromatin in OA-treated HSG cells. Silver grains representing AgNORs were not detected in the cells undergoing apoptosis. The dual-imposition view confirmed that AgNORs, which are visible as dots in nucleoli in the control cells, disappeared from the apoptotic nuclei of HSG cells. Our results indicate that the 110-kDa nucleolar Ag-NOR protein is associated with apoptosis and is cleaved during apoptosis. [source] Immunocytochemical analysis of the circadian clock protein in mouse hepatocytesMICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2003Manuela Malatesta Abstract Many biochemical, physiological, and behavioral processes in organisms ranging from prokaryotes to humans exhibit circadian rhythms, defined as cyclic oscillations of about 24 hours. The mechanism of the cellular circadian clock relies on interlocking positive and negative transcriptional/translational feedback loops based on the regulated expression of several genes. Clock is one of these genes and its transcript, CLOCK protein, is a transcription factor belonging to the bHLH-PAS family. In mammals the clock gene is expressed in several tissues, including the liver. In the present study, we analyzed by means of quali-quantitative immunoelectron microscopy the fine intracellular distribution of the CLOCK protein in mouse hepatocytes during the daily cycle. We demonstrated that CLOCK protein is mostly located in the cell nucleus, where it accumulates on perichromatin fibrils, representing the in situ form of nascent pre-mRNA, while condensed chromatin and nucleoli contain lower amounts of protein. Moreover, we found that CLOCK protein shows circadian oscillations in these nuclear compartments, peaking in late afternoon. At this time the hepatic transcriptional rate reaches the maximal level, thus suggesting an important role of CLOCK protein in the regulation of liver gene expression. Microsc. Res. Tech. 61:414,418, 2003. © 2003 Wiley-Liss, Inc. [source] Role of AMPK throughout meiotic maturation in the mouse oocyte: Evidence for promotion of polar body formation and suppression of premature activationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 10 2010Stephen M. Downs Abstract This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK-activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK-activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C-induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles, and midbody during maturation. Immunolocalization of the ,1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle but not in the spindle poles or midbody; ,2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. Mol. Reprod. Dev. 77:888,899, 2010. © 2010 Wiley-Liss, Inc. [source] Behaviors of ATP-dependent chromatin remodeling factors during maturation of bovine oocytes in vitroMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2010Gabbine Wee The mammalian oocyte undergoes dynamic changes in chromatin structure to reach complete maturation. However, little known is about behaviors of ATP-dependent chromatin remodeling factors (ACRFs) during meiosis. Here, we found that respective ACRFs may differently behave in the process of oocyte maturation in the bovine. All ACRFs interacted with oocytic chromatin at the germinal vesicle (GV) stage. Mi-2 and hSNF2H disappeared from GV-chromatin within 1,hr of in vitro culture whereas Brg-1 and BAF-170 were retained throughout germinal vesicle break down (GVBD). Brg-1 was localized on the condensed chromatin outside, whereas BAF-170 was entirely excluded from condensed chromatin. Thereafter, Brg-1 and BAF-170 interacted with metaphase I and metaphase II chromosomes. These results imply that Mi-2 and hSNF2H may initiate the meiotic resumption, and Brg-1 and BAF-170 may support chromatin condensation during meiosis. In addition, DNA methylation and methylation of histone H3 at lysine 9 (H3K9) seem to be constantly retained in the oocyte chromatin throughout in vitro maturation. Inhibition of ACRF activity by treatment with the inhibitor apyrase led to retarded chromatin remodeling in bovine oocytes, thereby resulting in poor development of fertilized embryos. Therefore, these results indicate that precise behaviors of ACRFs during meiosis are critical for nuclear maturation and subsequent embryonic development in the bovine. Mol. Reprod. Dev. 77: 126,135, 2010. © 2009 Wiley-Liss, Inc. [source] XY chromosomal bivalent: Nucleolar attractionMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2005Laura L. Tres Abstract Nucleolar organization by autosomal bivalents occurs during male meiotic prophase in mammalian species. During late leptotene,early zygotene stages, several autosomal bivalents are engaged in ribosomal RNA synthesis. At pachytene stage, nucleolar masses detach from the sites of primary autosomal origin, relocate close to the XY chromosomal pair, and nucleolar components become segregated. In early pachytene, an extensive synaptonemal complex at the pseudoautosomal region, links X and Y chromosomes in close juxtaposition along most of the length of the Y chromosome, except for a terminal region of the Y that diverges from the pairing region. As meiotic prophase advances, X and Y chromosomes progressively desynapse and, at diplotene, the XY pair is associated end-to-end. Xmr (Xlr-related, meiosis regulated) is a protein component of the nucleolus associated to the XY pair and of the asynapsed portions of the X and Y axial cores. Xmr, like SCP3, is a component of the lateral element of the synaptonemal complex. Both share structural homology in their C-terminal region. This region contains several putative coiled-coil domains known to mediate heterodimeric protein,protein interactions and to provide binding sites to regulatory proteins. Like Xmr, the tumor repressor protein BRCA1 is present along the unsynapsed cores of the XY bivalent. Both Xmr and BRCA1 have been implicated in a mechanism leading to chromatin condensation and transcription inactivation of the XY bivalent. The BRCA1-ATR kinase complex, as recent research suggests, triggers the phosphorylation of histone H2AX, which predominates in the condensed chromatin of the XY chromosomal pair. Xmr is not present in the XY bivalent when the expression of histone H2AX is deficient. The role of Xmr in chromatin condensation of the XY bivalent has not been determined. The partial structural homology of SCP3 and Xmr, their distribution along the unsynapsed axial cores of the X and Y chromosomes, and the presence of Xmr in the XY pair-associated nucleolus raises the possibility that Xmr, and other proteins including protein kinases, may be recruited to the nucleolus to perform functions related to chromosomal synapsis, chromatin condensation and recombination processes, as well as cell cycle progression. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source] Configurations of germinal vesicle (GV) chromatin in the goat differ from those of other speciesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005Hong-Shu Sui Abstract Configuration of germinal vesicle (GV) chromatin has been studied and found correlated with the developmental competence of oocytes in several mammalian species. A common feature in the configuration of GV chromatin in the species studied so far is that the diffuse chromatin (the so called "NSN" pattern) condenses into a perinucleolar ring (the so called "SN" configuration) with follicular growth. However, no study has been published on the configuration of GV chromatin in the goat. Nor is it known whether the perinucleolar ring of condensed chromatin (CC) in an oocyte represents a step toward final maturation or atresia. Changes in configurations of GV chromatin and RNA synthesis during goat oocyte growth, atresia and maturation in vivo and in vitro were investigated in this study. Based on both the size of nucleoli and the degree of chromatin condensation, the GV chromatin of goat oocytes was classified into GV1 characterized by large nucleoli and diffuse chromatin, GV2 with medium-sized nucleoli and condensed net-like (GV2n) or clumped (GV2c) chromatin, GV3 with small nucleoli and net-like (GV3n) or clumped (GV3c) chromatin, and GV4 with no nucleolus but clumped chromatin. The results showed that (i) the configurations of GV chromatin in the goat differ from those of other species in that the chromatin did not condense into a perinucleolar ring; (ii) most of the goat oocytes are synchronized at the GV3n configuration before GVBD; (iii) the GVn pattern might represent a healthy state, but the GVc an atretic state; (iv) in both goats and mice, the GC-specific (Chromomycin A3, CMA3) and the AT-specific (Hoechst 33342) fluorochromes followed the same pattern of distribution in GV chromatin; (v) the nucleolar size decreased significantly with oocyte growth and maturation in vivo and in vitro; and (vi) goat oocytes began GVBD at 8 hr and had completed it by 20 hr after onset of estrus. The peculiar configuration of GV chromatin of goat oocytes can be a useful model for studies of morphological and functional changes of different nuclear compartments during the cell cycle and cell differentiation, and the functional differentiation between GV3n and GV3c might be used for reference to the question whether the "SN" configuration in other species inclines toward ovulation or atresia. Mol. Reprod. Dev. 71: 227,236, 2005. © 2005 Wiley-Liss, Inc. [source] Morphological changes of sperm nuclei during spermatogenesis in the brown alga Cystoseira hakodatensis (Fucales, Phaeophyceae)PHYCOLOGICAL RESEARCH, Issue 2 2003Shinya Yoshikawa SUMMARY Morphological changes and chromatin condensation of sperm nuclei were observed during spermatogenesis in the fucalean brown alga Cystoseira hakodatensis (Yendo) Fensholt. Ultrastructural studies have shown that the mature spermatozoid has an elongated and concave nucleus with condensed chromatin. The morphological changes and the chromatin condensation process during spermatogenesis was observed. Nuclear size decreased in two stages during spermatogenesis. During the first stage, spherical nuclei decreased in size as they were undergoing meiotic divisions and the subsequent mitoses within the antheridium. During the second stage, the morphological transformation from a spherical into an elongated nucleus occurred. Afterwards, chromatin condensed at the periphery in each nucleus, and chromatin-free regions were observed in the center of the nucleus. These chromatin-free regions in the center of nucleus were compressed by the peripheral chromatin-condensed region. As the result, the elongated and concave nucleus of the mature sperm consisted of uniformly well-condensed chromatin. [source] Chromatin Configurations in the Ferret Germinal Vesicle that Reflect Developmental Competence for In Vitro MaturationREPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2009X Sun Contents In several mammalian species, the configuration of germinal vesicle (GV) chromatin correlates with the developmental competence of oocytes. Yet, no study has been published on the configuration of GV chromatin in ferret, nor is it known whether a specific configuration predicts meiotic competence in this species, in spite of the potential importance of ferret cloning to the study of human disease and to species conservation efforts. Here, we report on an analysis of the chromatin configuration in ferret GV oocytes and on how they correlate with meiotic development. Three distinct configurations were identified based on the degree of chromatin condensation: (1) fibrillar chromatin (FC), featuring strands of intertwined chromatin occupying most of the visible GV region; (2) intermediate condensed chromatin (ICC), characterized by dense, irregular chromatin masses throughout the GV; and (3) condensed chromatin (CC), which is highly compact and centered around the nucleolus. We also found that chromatin configuration was related to the extent of association with cumulus cells in cumulus,oocyte complexes; CC-configured oocytes were most often surrounded by a compact cumulus layer and also a compact corona but FC-configured oocytes were associated with neither. In addition, increasing chromatin condensation corresponded to an increase in oocyte diameter. Finally, following in vitro culture, significantly more CC-configured oocytes underwent maturation to meiotic metaphase II than did FC- or ICC-configured oocytes. We conclude that, in ferret, chromatin condensation is related to the sequential achievement of meiotic competencies during oocyte growth and differentiation, and thus can be used as a predictor of competence. [source] |