Home About us Contact | |||
Congestion Control Scheme (congestion + control_scheme)
Selected AbstractsCorruption-aware adaptive increase and adaptive decrease algorithm for TCP error and congestion controls in wireless networksINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 5 2009Lin Cui Abstract The conventional TCP tends to suffer from performance degradation due to packet corruptions in the wireless lossy channels, since any corruption event is regarded as an indication of network congestion. This paper proposes a TCP error and congestion control scheme using corruption-aware adaptive increase and adaptive decrease algorithm to improve TCP performance over wireless networks. In the proposed scheme, the available network bandwidth is estimated based on the amount of the received integral data as well as the received corrupted data. The slow start threshold is updated only when a lost but not corrupted segment is detected by sender, since the corrupted packets still arrive at the TCP receiver. In the proposed scheme, the duplicated ACKs are processed differently by sender depending on whether there are any lost but not corrupted segments at present. Simulation results show that the proposed scheme could significantly improve TCP throughput over the heterogeneous wired and wireless networks with a high bit error rate, compared with the existing TCP and its variants. Copyright © 2008 John Wiley & Sons, Ltd. [source] TCP-Peach for satellite networks: analytical model and performance evaluationINTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 5 2001Ian F. Akyildiz Abstract Current TCP protocols have low throughput performance in satellite networks mainly due to the effects of long propagation delays and high link error rates. TCP-Peach is a new congestion control scheme for satellite IP networks based on the use of low priority segments, called dummy segments. The sender transmits dummy segments to probe the availability of network resources. Dummy segments are treated as low priority segments thus, they do not effect the throughput of actual data segments. In this paper, TCP-Peach is presented along with its analytical model which is used to evaluate the throughput performance. Experiments show that TCP-Peach is robust to high link error rates as well as long propagation delays, and outperforms other TCP schemes for satellite networks. Copyright © 2001 John Wiley & Sons, Ltd. [source] EVA: a better TCP version for resource-insufficient networksINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 7 2002Jung-Shian Li Abstract TCP Vegas exhibits unfair congestion avoidance mechanism, which aggravates when there are insufficient network resources to accommodate buffer space of a pipe (bandwidth delay product). To remedy this shortcoming, we propose an Enhanced VegAs (EVA) that employs three auxiliary mechanisms: , revision, congestion detection and congestion tendency detection. A 2k factorial design with replications is used to study the effect of the three mechanisms. Our results show that TCP EVA achieves better performance than Vegas under various network conditions. Furthermore, congestion avoidance schemes, such as TCP EVA, perform much better than congestion control schemes, such as TCP Reno, in resource-insufficient networks. Copyright © 2002 John Wiley & Sons, Ltd. [source] Measured average cell rate-based congestion avoidance schemeINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 1 2001Hyun M. Choi Abstract Techniques for congestion control of available bit-rate (ABR) traffic in ATM (asynchronous transfer mode) networks remain an important issue. Several congestion control schemes have been proposed to adjust the cell rates of sources with a modified or mean allowed cell rate. To make these schemes work effectively in practice, the modified or mean allowed cell rate must converge under all conditions. However, it is not easy to obtain an accurate value, and an inaccurate value could result in network performance degradation such as severe oscillations and considerable unfairness. Therefore, we propose a measured average cell rate-based congestion avoidance for ABR traffic in ATM networks. The scheme has high throughput and achieves shorter queue lengths without congestion. With measured average cell rate, the scheme provides fast convergence to a start-up virtual connection (VC) and rate of equalization from different initial conditions of the sources. Thus, this scheme provides better fairness among connections. Copyright © 2001 John Wiley & Sons, Ltd. [source] |