Congenital Heart Defects (congenital + heart_defects)

Distribution by Scientific Domains


Selected Abstracts


Right Ventricular Function in Congenital Heart Defects Assessed by Regional Wall Motion

CONGENITAL HEART DISEASE, Issue 3 2010
FSCAI, Michael R. Nihill MB
ABSTRACT Objectives., To develop a simple method to assess right ventricular function by angiography. Background., Conventional methods of evaluating right ventricular function are inaccurate, cumbersome, and expensive. Methods., We analyzed biplane right ventricular angiograms taken in the posterior,anterior and lateral projections using software to measure right ventricular volumes and regional wall motion in 78 patients with normal hearts (n = 29), atrial septal defects (ASD n = 13), pulmonary valve stenosis (PVS n = 21), and postoperative atrial switch patients (n = 15). We also measured the shortening fraction (SF) from the midtricuspid annulus to the septum and correlated various angiographic measurements with the right ventricular (RV) ejection fraction. Results., The volume-overloaded patients (ASD) had larger end diastolic volumes and increased SF compared with normal patients, while the pressure-loaded patients (PVS) had normal volumes and SF. The postoperative atrial switch patients had decreased systolic function and increased end diastolic volume. The SF for all of the patients correlated with the ejection fraction (r= 0.785, P, .0001). Conclusions., A simple measurement of the end diastolic and end systolic distance from the midtricuspid annulus to the septum (SF) provides a good index of RV function by angiography and correlates well with RV ejection fraction. [source]


Cardiovascular Risk in Special Populations IV: Congenital Heart Defects

PREVENTIVE CARDIOLOGY, Issue 2 2010
Philip R. Liebson MD
First page of article [source]


Evidence by Expression Analysis of Candidate Genes for Congenital Heart Defects in the NF1 Microdeletion Interval

ANNALS OF HUMAN GENETICS, Issue 5 2005
M. Venturin
Summary It was recently reported that congenital heart disease is significantly more frequent in patients with NF1 microdeletion syndrome than in those with classical NF1. The outcome of congenital heart disease in this subset of patients is likely caused by the haploinsufficiency of gene/s in the deletion interval. Following in silico analysis of the deleted region, we found two genes known to be expressed in adult heart, the Joined to JAZF1 (SUZ12) and the Centaurin-alpha 2 (CENTA2) genes, and seven other genes with poorly defined patterns of expression and function. With the aim of defining their expression profiles in human fetal tissues (15th,21st weeks of gestation), expression analysis by RT-PCR and Northern blotting was performed. C17orf40, SUZ12 and CENTA2 were found to be mainly expressed in fetal heart, and following RT-PCR on mouse embryos and embryonic heart and brain at different stages of development, we found that the orthologous genes C17orf40, Suz12 and Centa2 are also expressed in early stages of development, before and during the formation of the four heart chambers. The presence of binding sites for Nkx2-5, a transcription factor expressed early in heart development, in all three mouse orthologous genes was predicted by bioinformatics, thus reinforcing the hypothesis that these genes might be involved in heart development and may be plausible candidates for congenital heart disease. [source]


The occurrence of congenital heart defects in an inbred herd of pigs in Australia

AUSTRALIAN VETERINARY JOURNAL, Issue 4 2006
PK HOLYOAKE
Objective To report on the first case of congenital heart defects in pigs in Australia. Design Retrospective analysis of case records from an inbred herd of "Westran' pigs at the University of Sydney, between January 2001 and December 2004. Detailed gross and histological examination of 15 hearts from pigs that had died or were euthanased in 2004. Case Details The necropsy records from a population of 471 pigs that had died (106 pigs) or were euthanased for research purposes (365 pigs) were analysed and the incidence of heart defects recorded, together with basic demographic data. No attempts were made to diagnose the condition in live pigs. Results Congenital heart defects were diagnosed in 6.4% of pigs but this is likely to be an underestimate of the incidence of the deformity. Eighteen pigs died on the farm as a result of the defect, and 12 pigs were diagnosed with the defect as an incidental finding. The most common abnormality seen at necropsy was a sac-like dilatation on the right lateral surface of the right atrium. This was associated with secondary deformity and hypoplasia of the adjacent left ventricle, interventricular region and part of the right ventricle. All hearts showed atrial septal defects of varying size. Conclusion This is the first reported case of congenital heart defects in pigs in Australia, and one of less than five reported cases of atrial septal defects in pigs in the world. The authors conclude that there may be an element of genetic predisposition to the malformation, since it has only been reported in this inbred line of pigs. [source]


First-year survival of infants born with congenital heart defects in Arkansas (1993-1998): A survival analysis using registry data

BIRTH DEFECTS RESEARCH, Issue 9 2003
Mario A. Cleves
BACKGROUND In the United States and other developed nations, birth defects are the leading cause of infant mortality. Congenital heart defects (CHDs) are among the most prevalent and fatal of all birth defects. Here we report the survival probability of infants born with CHDs in Arkansas and examine the impact of multiple malformations on survival. METHODS Birth and death certificate records were linked to birth defects registry data for infants born with CHDs from January 1993 through December 1998 in Arkansas. Both neonatal and first-year survival probabilities were estimated. These were computed non-parametrically using Kaplan-Meier's product limit method. A Cox proportional-hazards model was used to evaluate the relative importance of additional malformations on survival. RESULTS A total of 1,983 infants with CHDs were included in this study. The neonatal survival probability for this cohort was 94.0% (95% CI: 93.0%, 95.1%), and the first-year survival probability was 88.2% (95% CI: 86.8%, 89.6%). The presence of hypoplastic left heart syndrome conferred the greatest reduction in survival, whereas infants with pulmonic valve stenosis and infants with ventricular septal defects had the highest first-year survival. Infants with multiple CHDs had decreased survival compared to those with isolated heart defects. Survival was also adversely affected by the presence of congenital abnormalities in other body systems. CONCLUSIONS Neonatal and first-year survival of infants with CHDs varies by both the type of cardiac malformation and the presence of additional cardiac and non-cardiac malformations. Further work will focus on the effects of maternal and infant characteristics on survival. Birth Defects Research (Part A) 67:662,668, 2003. © 2003 Wiley-Liss, Inc. [source]


Second lineage of heart forming region provides new understanding of conotruncal heart defects

CONGENITAL ANOMALIES, Issue 1 2010
Yuji Nakajima
ABSTRACT Abnormal heart development causes various congenital heart defects. Recent cardiovascular biology studies have elucidated the morphological mechanisms involved in normal and abnormal heart development. The primitive heart tube originates from the lateral-most part of the heart forming mesoderm and mainly gives rise to the left ventricle. Then, during the cardiac looping, the outflow tract is elongated by the addition of cardiogenic cells from the both pharyngeal and splanchnic mesoderm (corresponding to anterior and secondary heart field, respectively), which originate from the mediocaudal region of the heart forming mesoderm and are later located anteriorly (rostrally) to the dorsal region of the heart tube. Therefore, the heart progenitors that contribute to the outflow tract region are distinct from those that form the left ventricle. The knowledge that there are two different lineages of heart progenitors in the four-chambered heart provides new understanding of the morphological and molecular etiology of conotruncal heart defects. [source]


Understanding heart development and congenital heart defects through developmental biology: A segmental approach

CONGENITAL ANOMALIES, Issue 4 2005
Masahide Sakabe
ABSTRACT The heart is the first organ to form and function during development. In the pregastrula chick embryo, cells contributing to the heart are found in the postero-lateral epiblast. During the pregastrula stages, interaction between the posterior epiblast and hypoblast is required for the anterior lateral plate mesoderm (ALM) to form, from which the heart will later develop. This tissue interaction is replaced by an Activin-like signal in culture. During gastrulation, the ALM is committed to the heart lineage by endoderm-secreted BMP and subsequently differentiates into cardiomyocyte. The right and left precardiac mesoderms migrate toward the ventral midline to form the beating primitive heart tube. Then, the heart tube generates a right-side bend, and the d-loop and presumptive heart segments begin to appear segmentally: outflow tract (OT), right ventricle, left ventricle, atrioventricular (AV) canal, atrium and sinus venosus. T-box transcription factors are involved in the formation of the heart segments: Tbx5 identifies the left ventricle and Tbx20 the right ventricle. After the formation of the heart segments, endothelial cells in the OT and AV regions transform into mesenchyme and generate valvuloseptal endocardial cushion tissue. This phenomenon is called endocardial EMT (epithelial-mesenchymal transformation) and is regulated mainly by BMP and TGF,. Finally, heart septa that have developed in the OT, ventricle, AV canal and atrium come into alignment and fuse, resulting in the completion of the four-chambered heart. Altered development seen in the cardiogenetic process is involved in the pathogenesis of congenital heart defects. Therefore, understanding the molecular nature regulating the ,nodal point' during heart development is important in order to understand the etiology of congenital heart defects, as well as normal heart development. [source]


The Long Road to Better ACHD Care

CONGENITAL HEART DISEASE, Issue 3 2010
Gary Webb MD
ABSTRACT The care of adult patients with congenital heart defects in the United States is spotty at best, and needs to improve greatly if the needs of these patients are to be met. The care of American children with congenital heart defects is generally excellent. Pediatric cardiac services are well established and well supported. The care of adults with congenital heart disease (CHD) is well established in only a few American centers. While there are an increasing number of clinics, they are generally poorly resourced with relatively few patients. If located in adult cardiology programs, they are usually minor players. If located in pediatric cardiac programs, they are usually minor players as well. Training programs for adult CHD (ACHD) caregivers are few, informal, and poorly funded. To improve the situation, we need perhaps 25 well-resourced and well-established regional ACHD centers in the United States. We need to stop the loss to care of CHD patients at risk of poor outcomes. We need to educate patients and families about the need for lifelong and skilled surveillance and care. We need to effect an orderly transfer from pediatric to adult care. We need to strengthen the human resource infrastructure of ACHD care through the training and hiring of healthcare professionals of a quality equivalent to those working in the pediatric care environment. We need to demonstrate that adult care is high quality care. We need more high-quality ACHD research. The ACHD community needs to establish its credibility with pediatric cardiac providers, adult cardiology groups, with governments, with professional organizations, and with research funding agencies. Accordingly, there is a need for strong political action on behalf of American ACHD patients. This must be led by patients and families. These efforts should be supported by pediatric cardiologists and children's hospitals, as well as by national professional organizations, governments, and health insurance companies. The goal of this political action should be to see that ACHD patients can receive high-quality lifelong surveillance, that we lose fewer patients to care, and that the staff and other services needed are available nationwide. [source]


Characterization of the cardiac phenotype in neonatal Ts65Dn mice

DEVELOPMENTAL DYNAMICS, Issue 2 2008
Austin D. Williams
Abstract The Ts65Dn mouse is the most-studied of murine models for Down syndrome. Homology between the triplicated murine genes and those on human chromosome 21 correlates with shared anomalies of Ts65Dn mice and Down syndrome patients, including congenital heart defects. Lethality is associated with inheritance of the T65Dn chromosome, and anomalies such as right aortic arch with Kommerell's diverticulum and interrupted aortic arch were found in trisomic neonates. The incidence of gross vascular abnormalities was 17% in the trisomic population. Histological analyses revealed interventricular septal defects and broad foramen ovale, while immunohistochemistry showed abnormal muscle composition in the cardiac valves of trisomic neonates. These findings confirm that the gene imbalance present in Ts65Dn disrupts crucial pathways during cardiac development. The candidate genes for congenital heart defects that are among the 104 triplicated genes in Ts65Dn mice are, therefore, implicated in the dysregulation of normal cardiogenic pathways in this model. Developmental Dynamics 237:426,435, 2008. © 2007 Wiley-Liss, Inc. [source]


Mice with mutations in Mahogunin ring finger-1 (Mgrn1) exhibit abnormal patterning of the left,right axis

DEVELOPMENTAL DYNAMICS, Issue 12 2006
Christina D. Cota
Abstract Mahogunin Ring Finger 1 (Mgrn1) encodes a RING-containing protein with ubiquitin ligase activity that has been implicated in pigment-type switching. In addition to having dark fur, mice lacking MGRN1 develop adult-onset spongy degeneration of the central nervous system and have reduced embryonic viability. Observation of complete situs inversus in a small proportion of adult Mgrn1 mutant mice suggested that embryonic lethality resulted from congenital heart defects due to defective establishment and/or maintenance of the left,right (LR) axis. Here we report that Mgrn1 is expressed in a pattern consistent with a role in LR patterning during early development and that many Mgrn1 mutant embryos show abnormal expression of asymmetrically expressed genes involved in LR patterning. A range of complex heart defects was observed in 20,25% of mid-to-late gestation Mgrn1 mutant embryos and another 20% were dead. This finding was consistent with 46,60% mortality of mutants by weaning age. Our results indicate that Mgrn1 acts early in the LR signaling cascade and is likely to provide new insight into this developmental process as Nodal expression was uncoupled from expression of other Nodal-responsive genes in Mgrn1 mutant embryos. Our work identifies a novel role for MGRN1 in embryonic patterning and suggests that the ubiquitination of MGRN1 target genes is essential for the proper establishment and/or maintenance of the LR axis. Developmental Dynamics 235:3438,3447, 2006. © 2006 Wiley-Liss, Inc. [source]


Are the cognitive functions of children with Down syndrome related to their participation?

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 1 2010
TANYA RIHTMAN
Aim, There is a lack of investigation into the functional developmental profile of children with Down syndrome. On the basis of current international health paradigms, the purpose of this study was to assess the developmental profile of these children. Method, Sixty children (33 males, 27 females) with Down syndrome (age range 6,16y; mean age 9y 3mo, SD 28.8mo), who had received standard, holistic, early intervention, were assessed. Of these, 42 (70%) had congenital anomalies, 12 had severe congenital heart defects. Participants were assessed on measures of cognitive function (Beery,Buktenica Developmental Test of Visual,Motor Integration; Stanford,Binet Intelligence Scale) and participation (Vineland Adaptive Behaviour Scales). Results, No difference was found on any measure on the basis of severity of congenital anomaly. Results showed improvements in age-related body function and correlations between specific body functions and participation. No decline in IQ was found with age, and significant correlations between IQ and all other measures were noted. Although sex differences were found in the body functions of short-term memory and motor function, no difference in measures of activity performance and participation was found. Interpretation, Our findings emphasize the need for paediatric Down syndrome intervention to encourage improved body functions while emphasizing the acquisition of functional skills that enable enhanced participation in age-appropriate activities. [source]


Intraoperative Transesophageal Echocardiography in Congenital Heart Disease

ECHOCARDIOGRAPHY, Issue 8 2002
F.R.A.C.P., F.R.C.P.(C.)Article first published online: 24 JUL 200, Jeffrey F. Smallhorn M.B.B.S.
Intraoperative transesophageal echocardiography has become an integral component of the repair of congenital heart defects. It currently has a direct impact on reducing morbidity and mortality in the pediatric cardiac population. To establish a successful program, it is important to follow guidelines for training as well as having a systematic approach to the evaluation of this patient population. This article addresses the specific indications in a patient population as practiced at the Hospital For Sick Children, Toronto. While there may be subtle differences between programs, the objectives are to provide excellent service to the pediatric cardiac patient in the operating room. [source]


Paternal contribution to fetal alcohol syndrome

ADDICTION BIOLOGY, Issue 2 2004
Ernest Abel
Maternal alcohol use during pregnancy is associated with a wide range of adverse outcomes for the child. Many women who drink during pregnancy also have male partners who abuse alcohol. Existing data on paternal effects of alcohol abuse during the preconceptual period and at the time of conception are reviewed. Epidemiological data offer some support for a paternal influence on birth weight, congenital heart defects, and some evidence of mild cognitive impairments. Animal data have demonstrated decreased litter size, increased prevalence of low birth weight fetuses and mixed data on risk of malformations. Increased susceptibility to Pseudomonas bacterial infection has been reported. Cognitive and behavioral findings are the most robust effects. These include learning and memory deficits, hyperactivity, and poor stress tolerance. Multiple causal mechanisms for a paternal effect have been suggested, but none seems satisfactory to explain all findings. Further research is needed on paternal effects in animals and human populations. The results of this research may influence prevention activities. [source]


The adenine nucleotide translocase type 1 (ANT1): A new factor in mitochondrial disease

IUBMB LIFE, Issue 9 2005
J. Daniel Sharer
Abstract Mitochondrial disorders of oxidative phosphorylation (OXPHOS) comprise a growing list of potentially lethal diseases caused by mutations in either mitochondrial (mtDNA) or nuclear DNA (nDNA). Two such conditions, autosomal dominant progressive external ophthalmoplegia (adPEO) and Senger's Syndrome, are associated with dysfunction of the heart and muscle-specific isoform of the adenine nucleotide translocase (ANT1), a nDNA gene product that facilitates transport of ATP and ADP across the inner mitochondrial membrane. AdPEO is a mtDNA deletion disorder broadly characterized by pathology involving the eyes, skeletal muscle, and central nervous system. In addition to ANT1, mutations in at least two other nuclear genes, twinkle and POLG, have been shown to cause mtDNA destabilization associated with adPEO. Senger's syndrome is an autosomal recessive condition characterized by congenital heart defects, abnormalities of skeletal muscle mitochondria, cataracts, and elevated circulatory levels of lactic acid. This syndrome is associated with severe depletion of ANT1, which may be the result of an as yet unidentified ANT1-specific transcriptional or translational processing error. ANT1 has also been associated with a third condition, autosomal dominant facioscapulohumeral muscular dystrophy (FSHD), an adult onset disorder characterized by variable muscle weakness in the face, feet, shoulders, and hips. FSHD patients possess specific DNA deletions on chromosome 4, which appear to cause derepression of several nearby genes, including ANT1. Early development of FSHD may involve mitochondrial dysfunction and increased oxidative stress, possibly associated with overexpression of ANT1. IUBMB Life, 57: 607-614, 2005 [source]


The Blalock-Taussig Shunt

JOURNAL OF CARDIAC SURGERY, Issue 2 2009
Shi-Min Yuan M.D.
This warrants us a zest in making a comprehensive survey on this subject. Methods: Articles were extensively retrieved from the MEDLINE database of National Library of Medicine USA if the abstract contained information relevant to the B-T shunt in terms of the conduit options, modified surgical techniques, surgical indications, short- and long-term results, complications, and prognosis. Further retrieval was undertaken by manually searching the reference list of relevant papers. Results: Classical or modified B-T shunts, either on ipsilateral or contralateral side to the aortic arch, can be performed on patients of any age with minimum postoperative complications and low operative mortality. Expended polytetrafluoroethylene has gained satisfactory long-term patency rate in the construction of the modified B-T shunt. Excellent pulmonary artery growth was observed in the patients with a modified B-T shunt, and it has shown superb prognosis over the classic with regard to hemodynamics, patency rate, and survival. Conclusions: The modified B-T shunt that was developed on basis of the classic fashion remains the preferable palliative procedure aiming at enhancing pulmonary blood flow for neonates and infants with complicated cyanotic congenital heart defects. The modified B-T shunt is technically simpler with less dissection, and blood flow to the respective arm is not jeopardized. It has been proved to be of low risk, excellent palliation, and is associated with excellent pulmonary artery growth, has become the most effective palliative shunt procedure of today. [source]


Down syndrome: a cardiovascular perspective

JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, Issue 5 2009
J. C. Vis
Abstract This review focuses on the heart and vascular system in patients with Down syndrome. A clear knowledge on the wide spectrum of various abnormalities associated with this syndrome is essential for skilful management of cardiac problems in patients with Down syndrome. Epidemiology of congenital heart defects, cardiovascular aspects and thyroid-related cardiac impairment in patients with Down syndrome will be discussed. [source]


Hospitalizations of infants and young children with Down syndrome: evidence from inpatient person-records from a statewide administrative database

JOURNAL OF INTELLECTUAL DISABILITY RESEARCH, Issue 12 2007
S. A. So
Abstract Background Although individuals with Down syndrome are increasingly living into the adult years, infants and young children with the syndrome continue to be at increased risk for health problems. Using linked, statewide administrative hospital discharge records of all infants with Down syndrome born over a 3-year period, this study ,follows forward' over 200 infants with Down syndrome from each individual's birth until they turn 3 years of age. By utilizing this procedure, we were able to assess the amount, reasons for, and timing of inpatient hospitalization and to investigate how congenital heart defects (CHDs) relate to hospitalization for young children with Down syndrome. Method This population-based, retrospective study used statewide administrative hospital discharge data. Subject inclusion criteria included residents of Tennessee, born between 1997 and 1999, and diagnosed with Down syndrome at birth. Inpatient records were linked to create person-record histories of hospitalization from birth to age 3. Main outcomes included the number of Non-birth Hospitalizations, length of stay, principal and other diagnosis codes to indicate reason(s) for hospitalization, and patient's age at first (non-birth) hospitalization. Procedure codes were added to determine if children with CHD were hospitalized primarily for operations on the heart. Results Of 217 births, 213 children survived birth; 54% (115) had CHDs. Almost half (49.8%) of all children were hospitalized before age 3; these 106 children were admitted 245 times. Children with CHDs were 2.31 times more likely to be hospitalized than children without CHDs. Respiratory illnesses affected 64.9% of all hospitalized children with CHD, were the principal diagnoses in 38.3% of their hospitalizations, and were the main principal diagnoses for non-CHD children. Thirty-three (of 77) hospitalized children with CHD underwent cardiac surgeries, accounting for 19.3% of all admissions. Median time to first hospitalization was 96 days (CI: 78,114) for CHD infants, 197 days (CI: 46,347) for non-CHD infants. Conclusions Children with Down syndrome are at high risk for early hospitalization. Prevention and treatment of respiratory illnesses require more attention. Down syndrome is associated with early, serious, physical health problems and substantial inpatient care use. [source]


ASD/PFO Devices: What Is in the Pipeline?

JOURNAL OF INTERVENTIONAL CARDIOLOGY, Issue 6 2007
NICOLAS MAJUNKE
Since the initial description of an atrial septal defect (ASD) occluding device in the mid-1970s by King and Mills,a number of devices have been developed. To date, various transcatheter devices and methods to close congenital heart defects are currently available commercially or within clinical trials. Devices have been designed specifically for the ASD and patent foramen ovale (PFO). The trend in interventional treatment of intracardiac shunts is toward defect-specific systems and new devices minimizing the foreign material left in the atria. This review first focuses on new devices that are not approved in the United States but are elsewhere, and then reviews the experimental devices for PFO and ASD closure. [source]


Biventricular Pacing as Alternative Therapy for Dilated Cardiomyopathy Associated with Congenital Heart Disease

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2 2001
EDWIN RODRÍGUEZ-CRUZ
RODRÍGUEZ-CRUZ, E., et al.: Biventricular Pacing as Alternative Therapy for Dilated Cardiomyopathy Associated with Congenital Heart Disease. Biventricular, alternative, and multisite pacing are currently being explored to improve cardiac function among patients with medically refractory, end-stage dilated cardiomyopathies. Although, due to inherent myocardial abnormalities, patients with repaired congenital heart defects may be at a greater risk than others to develop heart failure, often requiring cardiac transplantation. The efficacy of biventricular pacing among these patients is unknown. This report presents a patient with successfully repaired congenital heart disease in infancy who developed a symptomatic dilated cardiomyopathy at 22 years of age. Following biventricular pacing, systemic ventricular function showed a 14% improvement in ventricular dP/dt. One month later, subjective symptoms improved and cardiac ultrasound illustrated a 125% increase in fractional area of change. Exercise stress testing showed a 17% improvement in aerobic work capacity. [source]


Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children

PEDIATRIC ANESTHESIA, Issue 2 2008
NICOLE NAGDYMAN
Summary Background:, We compared two different near-infrared spectrophotometers: cerebral tissue oxygenation index (TOI) measured by NIRO 200 and regional cerebral oxygenation index (rSO2) measured by INVOS 5100 with venous oxygen saturation in the jugular bulb (SjO2) and central SvO2 from the superior caval vein (SVC) during elective cardiac catheterization in children. Methods:, A prospective observational clinical study in 31 children with congenital heart defects in a catheterization laboratory was undertaken. TOI was compared with SjO2 in the left jugular bulb and with SvO2. rSO2 was compared with SjO2 from the right jugular bulb and SvO2. Linear regression analysis and Pearson's correlation coefficient were calculated and Bland,Altman analyses were performed. Results:, Cerebral TOI and SjO2 were significantly correlated (r = 0.56, P < 0.0001), as well as TOI and SvO2 with r = 0.74 (P < 0.0001). Bland,Altman plots showed a mean bias of ,4.3% with limits of agreement of 15.7% and ,24.3% for TOI and SjO2 and a mean bias of ,4.9% with limits of agreement of 10.3% and ,20.1% for TOI and SvO2. Cerebral rSO2 and SjO2 showed a significant correlation (r = 0.83, P < 0.0001) and rSO2 and SvO2 showed excellent correlation with r = 0.93 (P < 0.0001). Bland,Altman plots showed a mean bias of ,5.2% with limits of agreement of between 8.4% and ,18.8% for rSO2 and SjO2 and a mean bias of 5.6% with limits of agreement of 13.4% and ,2.2% for rSO2 and SvO2. Conclusions:, Both near-infrared spectroscopy devices demonstrate a significant correlation with SjO2 and SvO2 values; nevertheless both devices demonstrate a substantial bias of the measurements to both SjO2 and SvO2. [source]


Increased nuchal translucency in euploid fetuses,what should we be telling the parents?

PRENATAL DIAGNOSIS, Issue 2 2010
C.M. Bilardo
Abstract Nuchal translucency (NT) measurement between 11 and 14 weeks' gestation is an undisputed marker for aneuploidies. When conventional karyotyping is normal, enlarged NT is a strong marker for adverse pregnancy outcome, associated with miscarriage, intrauterine death, congenital heart defects, and numerous other structural defects and genetic syndromes. The risk of adverse outcome is proportional to the degree of NT enlargement. Although the majority of structural anomalies are amenable to ultrasound detection, unspecified genetic syndromes involving developmental delay may only emerge after birth. Concern over these prenatally undetectable conditions is a heavy burden for parents. However, following detection of enlarged NT the majority of babies with normal detailed ultrasound examination and echocardiography will have an uneventful outcome with no increased risk for developmental delay when compared to the general population. Counseling should emphasize this to help parents restore hope in normal pregnancy outcome and infant development. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Identification of second trimester screen positive pregnancies at increased risk for congenital heart defects

PRENATAL DIAGNOSIS, Issue 6 2009
Laura L. Jelliffe-Pawlowski
Abstract Objective To examine whether second trimester biomarkers could be used to identify screen positive pregnancies at increased risk for congenital heart defects (CHDs) and measure the effect of using different biomarker cut points on the detection of CHDs and on the performance of predictive models. Methods Included were 19,402 pregnancies without chromosomal defects, which were screen positive for Down syndrome or other birth defects based on maternal serum measurements of alpha-fetoprotein (AFP), human chorionic gonadotrophin (hCG), and unconjugated estriol (uE3). Logistic regression models were built that compared biomarkers for CHD cases compared to controls. Results CHD cases were more likely to be screen positive for trisomy-18, to have a nuchal fold (NF) , 5 mm, and/or to have an hCG multiple of the median (MoM) , 95th percentile in models that considered screen positive grouping. In models that did not consider screen positive grouping, cases were more likely to have a NF , 5 mm, an AFP MoM ,10th percentile, an hCG MoM ,25th percentile, and/or an hCG MoM , 75th percentile. Conclusion Along with NF, second trimester maternal serum biomarkers may be useful indicators for fetal and newborn evaluation for CHDs in screen positive pregnancies without identified chromosomal defects. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Prenatal screening for serious congenital heart defects using nuchal translucency: a meta-analysis

PRENATAL DIAGNOSIS, Issue 12 2008
Nicholas J. Wald
Abstract Objectives To assess the performance of nuchal translucency (NT) measurements in screening for congenital heart defects (CHD) which would benefit from prenatal detection. Methods A literature search was conducted of studies published prior to August 2007 of CHD and NT measurements in fetuses without chromosome defects. From this, data on 159 pregnancies were obtained. Fetuses with CHD that would benefit from prenatal detection were identified and their NT measurements were compared with NT measurements in 29 776 unaffected fetuses without Down syndrome from the Serum Urine and Ultrasound Screening Study (SURUSS) trial to determine the screening performance of NT measurements. Results In all 67 fetuses with CHD were identified as potentially likely to benefit from prenatal detection. Using NT measurements, the estimated detection rate (DR) for a 5% false-positive rate (FPR) was 52% (95% CI: 42,71). Conclusion Prenatal screening for CHD using NT measurements is likely to be effective, and given that NT measurement is already in place as part of prenatal screening for Down syndrome; this is an ideal time to set up demonstration projects to validate these results. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Evaluation of prenatal diagnosis of associated congenital heart diseases by fetal ultrasonographic examination in Europe

PRENATAL DIAGNOSIS, Issue 4 2001
C. Stoll
Abstract Ultrasound scans in the mid trimester of pregnancy are now a routine part of antenatal care in most European countries. With the assistance of Registries of Congenital Anomalies a study was undertaken in Europe. The objective of the study was to evaluate prenatal detection of congenital heart defects (CHD) by routine ultrasonographic examination of the fetus. All congenital malformations suspected prenatally and all congenital malformations, including chromosome anomalies, confirmed at birth were identified from the Congenital Malformation Registers, including 20 registers from the following European countries: Austria, Croatia, Denmark, France, Germany, Italy, Lithuania, Spain, Switzerland, The Netherlands, UK and Ukrainia. These registries follow the same methodology. The study period was 1996,1998, 709,030 births were covered, and 8126 cases with congenital malformations were registered. If more than one cardiac malformation was present the case was coded as complex cardiac malformation. CHD were subdivided into ,isolated' when only a cardiac malformation was present and ,associated' when at least one other major extra cardiac malformation was present. The associated CHD were subdivided into chromosomal, syndromic non-chromosomal and multiple. The study comprised 761 associated CHD including 282 cases with multiple malformations, 375 cases with chromosomal anomalies and 104 cases with non-chromosomal syndromes. The proportion of prenatal diagnosis of associated CHD varied in relation to the ultrasound screening policies from 17.9% in countries without routine screening (The Netherlands and Denmark) to 46.0% in countries with only one routine fetal scan and 55.6% in countries with two or three routine fetal scans. The prenatal detection rate of chromosomal anomalies was 40.3% (151/375 cases). This rate for recognized syndromes and multiply malformed with CHD was 51.9% (54/104 cases) and 48.6% (137/282 cases), respectively; 150/229 Down syndrome (65.8%) were livebirths. Concerning the syndromic cases, the detection rate of deletion 22q11, situs anomalies and VATER association was 44.4%, 64.7% and 46.6%, respectively. In conclusion, the present study shows large regional variations in the prenatal detection rate of CHD with the highest rates in European regions with three screening scans. Prenatal diagnosis of CHD is significantly higher if associated malformations are present. Cardiac defects affecting the size of the ventricles have the highest detection rate. Mean gestational age at discovery was 20,24 weeks for the majority of associated cardiac defects. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Patterns of dysmorphic features in schizophrenia,

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 8 2001
L.E. Scutt
Abstract Congenital dysmorphic features are prevalent in schizophrenia and may reflect underlying neurodevelopmental abnormalities. A cluster analysis approach delineating patterns of dysmorphic features has been used in genetics to classify individuals into more etiologically homogeneous subgroups. In the present study, this approach was applied to schizophrenia, using a sample with a suspected genetic syndrome as a testable model. Subjects (n,=,159) with schizophrenia or schizoaffective disorder were ascertained from chronic patient populations (random, n,=,123) or referred with possible 22q11 deletion syndrome (referred, n,=,36). All subjects were evaluated for presence or absence of 70 reliably assessed dysmorphic features, which were used in a three-step cluster analysis. The analysis produced four major clusters with different patterns of dysmorphic features. Significant between,cluster differences were found for rates of 37 dysmorphic features (P,<,0.05), median number of dysmorphic features (P,=,0.0001), and validating features not used in the cluster analysis: mild mental retardation (P,=,0.001) and congenital heart defects (P,=,0.002). Two clusters (1 and 4) appeared to represent more developmental subgroups of schizophrenia with elevated rates of dysmorphic features and validating features. Cluster 1 (n,=,27) comprised mostly referred subjects. Cluster 4 (n,=,18) had a different pattern of dysmorphic features; one subject had a mosaic Turner syndrome variant. Two other clusters had lower rates and patterns of features consistent with those found in previous studies of schizophrenia. Delineating patterns of dysmorphic features may help identify subgroups that could represent neurodevelopmental forms of schizophrenia with more homogeneous origins. © 2001 Wiley-Liss, Inc. [source]


Are children of older fathers at risk for genetic disorders?

ANDROLOGIA, Issue 4 2003
A. Jung
Summary. Genetic risks related to paternal age should be of interest to clinical andrologists counselling older men who wish to father a child. Theoretically, the number of (pre-meiotic) mitotic cell divisions during spermatogenesis and their remarkable increase with ageing compared with oogenesis would be in favour of genetic risks for the offspring of older men. But for numerical and structural chromosomal anomalies, such an influence of paternal age has not been found. However, in several autosomal dominant disorders affecting three specific genes (fibroblast growth factor receptor 2 and 3, RET proto-oncogene) the risk for a child to be affected increases with paternal age at time of birth. For other autosomal dominant ,X chromosomal dominant or recessive disorders, the available data are sufficient to support the concept of a positive relationship between paternal age and de novo gene mutations. Studies analysing gene sequences of affected children and their parents would allow further evaluation of this topic. The impact of paternal age on disorders with a complex genetic background, however, is a matter of debate. A significant effect of paternal age could not be shown for nonfamilial Alzheimer's disease, congenital heart defects, nonfamilial schizophrenia, acute lymphoblastic leukaemia or prostate cancer. [source]


European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007

ANNALS OF HUMAN GENETICS, Issue 4 2007
Article first published online: 28 MAY 200
Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaďti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at http://www.esat.kuleuven.be/endeavour. Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. G.et al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. L.et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, J.et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naďve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source]


The Aachen MiniHLM,A Miniaturized Heart-Lung Machine for Neonates With an Integrated Rotary Blood Pump

ARTIFICIAL ORGANS, Issue 9 2010
Jutta Arens
Abstract The operation of congenital heart defects in neonates often requires the use of heart-lung machines (HLMs) to provide perfusion and oxygenation. This is prevalently followed by serious complications inter alia caused by hemodilution and extrinsic blood contact surfaces. Thus, one goal of developing a HLM for neonates is the reduction of priming volume and contact surface. The currently available systems offer reasonable priming volumes for oxygenators, reservoirs, etc. However, the necessary tubing system contains the highest volumes within the whole system. This is due to the use of roller pumps; hence, the resulting placement of the complete HLM is between 1 and 2 m away from the operating table due to connective tubing between the components. Therefore, we pursued a novel approach for a miniaturized HLM (MiniHLM) by integrating all major system components in one single device. In particular, the MiniHLM is a HLM with the rotary blood pump centrically integrated into the oxygenator and a heat exchanger integrated into the cardiotomy reservoir which is directly connected to the pump inlet. Thus, tubing is only necessary between the patient and MiniHLM. A total priming volume of 102 mL (including arterial filter and a/v line) could be achieved. To validate the overall concept and the specific design we conducted several in vitro and in vivo test series. All tests confirm the novel concept of the MiniHLM. Its low priming volume and blood contact surface may significantly reduce known complications related to cardiopulmonary bypass in neonates (e.g., inflammatory reaction and capillary leak syndrome). [source]


Brain Protection During Pediatric Cardiopulmonary Bypass

ARTIFICIAL ORGANS, Issue 4 2010
Xiaowei W. Su
Abstract Improvements in peri- and postoperative surgical techniques have greatly improved outcomes for pediatric patients undergoing cardiopulmonary bypass (CPB) in the treatment of congenital heart defects (CHDs). With decreased mortality rates, the incidence of adverse neurological outcomes, comprising cognitive and speech impairments, motor deficits, and behavioral abnormalities, has increased in those patients surviving bypass. A number of mechanisms, including ischemia, reperfusion injury, hypothermia, inflammation, and hemodilution, contribute to brain insult, which is further confounded by unique challenges presented in the pediatric population. However, a number of brain monitoring and preventative techniques have been developed or are being currently evaluated in the practice of pediatric CPB. Monitoring techniques include electroencephalography, near-infrared as well as visible light spectroscopy, transcranial Doppler ultrasound, and emboli detection and classification quantitation. Preventative measures include hypothermic perfusion techniques such as deep hypothermic circulatory arrest, low-flow CPB, blood gas management, and pharmacologic prophylaxes, among others. The present review summarizes the principles of brain insult, neurodevelopmental abnormalities, monitoring techniques, methods of prevention, as well as preexisting morbidities and risk factors in pediatric CPB, with a focus on brain protection. Clinical and translational research is presented with the aim of determining methods that may optimize neurological outcomes post CPB and guiding further study. [source]


Mechanical Aortic Valve Replacement in Children and Adolescents After Previous Repair of Congenital Heart Disease

ARTIFICIAL ORGANS, Issue 11 2009
Aron-Frederik Popov
Abstract Due to improved outcome after surgery for congenital heart defects, children, adolescents, and grown-ups with congenital heart defects become an increasing population. In order to evaluate operative risk and early outcome after mechanical aortic valve replacement (AVR) in this population, we reviewed patients who underwent previous repair of congenital heart defects. Between July 2002 and November 2008, 15 (10 male and 5 female) consecutive patients (mean age 14.5 ± 10.5 years) underwent mechanical AVR. Hemodynamic indications for AVR were aortic stenosis in four (27%), aortic insufficiency in eight (53%), and mixed disease in three (20%) after previous repair of congenital heart defects. All patients had undergone one or more previous cardiovascular operations due to any congenital heart disease. Concomitant cardiac procedures were performed in all of them. In addition to AVR, in two patients, a mitral valve exchange was performed. One patient received a right ventricle-pulmonary artery conduit replacement as concomitant procedure. The mean size of implanted valves was 23 mm (range 17,29 mm). There were neither early deaths nor late mortality until December 2008. Reoperations were necessary in five (33%) and included implantation of a permanent pacemaker due to complete atrioventricular block in two (15%), mitral valve replacement with a mechanical prosthesis due to moderate to severe mitral regurgitation in one (7%), aortocoronary bypass grafting due to stenosis of a coronary artery in one (7%), and in one (7%), a redo subaortic stenosis resection was performed because of a secondary subaortic stenosis. At the latest clinical evaluation, all patients were in good clinical condition without a pathological increased gradient across the aortic valve prosthesis or paravalvular leakage in echocardiography. Mechanical AVR has excellent results in patients after previous repair of congenital heart defects in childhood, even in combination with complex concomitant procedures. Previous operations do not significantly affect postoperative outcome. [source]