Home About us Contact | |||
Complex Pedigrees (complex + pedigree)
Selected AbstractsFinding starting points for Markov chain Monte Carlo analysis of genetic data from large and complex pedigreesGENETIC EPIDEMIOLOGY, Issue 1 2003Yuqun Luo Abstract Genetic data from founder populations are advantageous for studies of complex traits that are often plagued by the problem of genetic heterogeneity. However, the desire to analyze large and complex pedigrees that often arise from such populations, coupled with the need to handle many linked and highly polymorphic loci simultaneously, poses challenges to current standard approaches. A viable alternative to solving such problems is via Markov chain Monte Carlo (MCMC) procedures, where a Markov chain, defined on the state space of a latent variable (e.g., genotypic configuration or inheritance vector), is constructed. However, finding starting points for the Markov chains is a difficult problem when the pedigree is not single-locus peelable; methods proposed in the literature have not yielded completely satisfactory solutions. We propose a generalization of the heated Gibbs sampler with relaxed penetrances (HGRP) of Lin et al., ([1993] IMA J. Math. Appl. Med. Biol. 10:1,17) to search for starting points. HGRP guarantees that a starting point will be found if there is no error in the data, but the chain usually needs to be run for a long time if the pedigree is extremely large and complex. By introducing a forcing step, the current algorithm substantially reduces the state space, and hence effectively speeds up the process of finding a starting point. Our algorithm also has a built-in preprocessing procedure for Mendelian error detection. The algorithm has been applied to both simulated and real data on two large and complex Hutterite pedigrees under many settings, and good results are obtained. The algorithm has been implemented in a user-friendly package called START. Genet Epidemiol 25:14,24, 2003. © 2003 Wiley-Liss, Inc. [source] Generalized marker regression and interval QTL mapping methods for binary traits in half-sib family designsJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 5 2001H. N. Kadarmideen A Generalized Marker Regression Mapping (GMR) approach was developed for mapping Quantitative Trait Loci (QTL) affecting binary polygenic traits in a single-family half-sib design. The GMR is based on threshold-liability model theory and regression of offspring phenotype on expected marker genotypes at flanking marker loci. Using simulation, statistical power and bias of QTL mapping for binary traits by GMR was compared with full QTL interval mapping based on a threshold model (GIM) and with a linear marker regression mapping method (LMR). Empirical significance threshold values, power and estimates of QTL location and effect were identical for GIM and GMR when QTL mapping was restricted to within the marker interval. These results show that the theory of the marker regression method for QTL mapping is also applicable to binary traits and possibly for traits with other non-normal distributions. The linear and threshold models based on marker regression (LMR and GMR) also resulted in similar estimates and power for large progeny group sizes, indicating that LMR can be used for binary data for balanced designs with large families, as this method is computationally simpler than GMR. GMR may have a greater potential than LMR for QTL mapping for binary traits in complex situations such as QTL mapping with complex pedigrees, random models and models with interactions. Generalisierte Marker Regression und Intervall QTL Kartierungsmethoden für binäre Merkmale in einem Halbgeschwisterdesign Es wurde ein Ansatz zur generalisierten Marker Regressions Kartierung (GMR) entwickelt, um quantitative Merkmalsloci (QTL) zu kartieren, die binäre polygenetische Merkmale in einem Einfamilien-Halbgeschwisterdesign beeinflussen. Das GMR basiert auf der Theorie eines Schwellenwertmodells und auf der Regression des Nachkommenphänotyps auf den erwarteten Markergenotyp der flankierenden Markerloci. Mittels Simulation wurde die statistische Power und Schiefe der QTL Kartierung für binäre Merkmale nach GMR verglichen mit vollständiger QTL Intervallkartierung, die auf einem Schwellenmodell (GIM) basiert, und mit einer Methode zur linearen Marker Regressions Kartierung (LMR). Empirische Signifikanzschwellenwerte, Power und Schätzer für die QTL Lokation und der Effekt waren für GIM und GMR identisch, so lange die QTL Kartierung innerhalb des Markerintervalls definiert war. Diese Ergebnisse zeigen, dass die Theorie der Marker Regressions-Methode zur QTL Kartierung auch für binäre Merkmale und möglicherweise auch für Merkmale, die keiner Normalverteilung folgen, geeignet ist. Die linearen und Schwellenmodelle, die auf Marker Regression (LMR und GMR) basieren, ergaben ebenfalls ähnliche Schätzer und Power bei großen Nachkommengruppen, was schlussfolgern lässt, dass LMR für binäre Daten in einem balancierten Design mit großen Familien genutzt werden kann. Schließlich ist diese Methode computertechnisch einfacher als GMR. GMR mag für die QTL Kartierung bei binären Merkmalen in komplexen Situationen ein größeres Potential haben als LMR. Ein Beispiel dafür ist die QTL Kartierung mit komplexen Pedigrees, zufälligen Modellen und Interaktionsmodellen. [source] Characterization of 12 new microsatellite loci in Aenictus and Neivamyrmex army antsMOLECULAR ECOLOGY RESOURCES, Issue 4 2007DANIEL J. C. KRONAUER Abstract Here we describe 12 polymorphic microsatellite loci that were cloned and characterized for three species of army ants: the North American Neivamyrmex nigrescens, and the Asian Aenictus laeviceps and Aenictus dentatus. Observed and expected heterozygosities ranged from 0.37 to 0.97 (mean 0.70), and from 0.48 to 0.95 (mean 0.72), respectively. We observed 2,30 (mean 12) alleles per locus. These new genetic markers will be useful for studies of overall population structure and the complex pedigrees in colonies of army ants. [source] |