Home About us Contact | |||
Complex Particles (complex + particle)
Selected AbstractsThe Synthesis and Assembly of Polymeric Microparticles Using MicrofluidicsADVANCED MATERIALS, Issue 41 2009Dhananjay Dendukuri Abstract The controlled synthesis of micrometer-sized polymeric particles bearing features such as nonspherical shapes and spatially segregated chemical properties is becoming increasingly important. Such particles can enable fundamental studies on self-assembly and suspension rheology, as well as be used in applications ranging from medical diagnostics to photonic devices. Microfluidics has recently emerged as a very promising route to the synthesis of such polymeric particles, providing fine control over particle shape, size, chemical anisotropy, porosity, and core/shell structure. This progress report summarizes microfluidic approaches to particle synthesis using both droplet- and flow-lithography-based methods, as well as particle assembly in microfluidic devices. The particles formed are classified according to their morphology, chemical anisotropy, and internal structure, and relevant examples are provided to illustrate each of these approaches. Emerging applications of the complex particles formed using these techniques and the outlook for such processes are discussed. [source] Preparation of monomethyl poly(ethylene glycol)- g -chitosan copolymers with various degrees of substitution: Their ability to encapsulate and condense plasmid DNAJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Wei Zhang Abstract Chitosan (CS) has great potential as a nonvirus gene delivery vector, but its application is limited because of poor water solubility. Monomethyl poly(ethylene glycol) (mPEG)- graft -CS copolymers were synthesized by the reaction of mPEG,aldehyde (oxidized mPEG) with amino groups on CS chains; they showed enhanced solubility in water. Copolymers with various mPEG degrees of substitution (DS) and CS molecular weights were obtained, and their capabilities of DNA encapsulation were compared through gel retardation assay and particle size and , potential measurements. The effects of different ratios of primary amines on CS to the phosphate groups on DNA (N/P ratios), DS, and molecular weights on particle size and encapsulation efficiency were investigated. The results show that high N/P ratios and proper DS were necessary for the formation of well-distributed complex particles. Among all of these samples, mPEG (3.55),CS (50 kDa)/DNA complexes [where the parentheses following mPEG indicate DS (%), and the parentheses following CS indicate the molecular weight of CS] raised the , potential from negative to positive most quickly, yielded the smallest particle size, and were retarded in agarose gel at the lowest N/P ratio; this indicated the best efficiency of DNA encapsulation. On the contrary, mPEG (0.80),CS (50 kDa)/DNA complexes raised the , potential to positive most slowly, fluctuated around the value 0 from N/P ratios of 15 : 1 to 30 : 1, and were retarded in agarose gel at the highest N/P ratio; this indicated the lowest efficiency of encapsulating plasmids. Copolymers with desirable efficiencies of DNA encapsulation could be promising gene carriers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Estimating the number of complex particles using the ConnEulor principleJOURNAL OF MICROSCOPY, Issue 3 2001J. P. Kroustrup An unbiased counting rule for the number of topologically simple objects of any shape, size and distribution in 3D space is a pertinent problem in stereology. Combining the disector principle with the object's 3D Euler number makes possible number estimation, which until now has been obtainable only by exhaustive serial sections. The disector is a set of two sections where the object's profiles in one section are compared with its profiles on the neighbouring section, and the number of new 2D topological events is recorded. In a disector of known volume the sum of topological events is a direct estimate of the disector contribution to the total Euler number, which forms the basis for an ultimate number estimator in 3D, the ConnEulor. The method is illustrated by an electron microscopic study of the number of mitochondria in the exocrine cells of the pancreas. [source] Preparation of budesonide/,-cyclodextrin complexes in supercritical fluids with a novel SEDS methodJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2006Tarja Toropainen Abstract The aim was to investigate if solid drug/cyclodextrin complexes could be produced in a single-step process with a solution enhanced dispersion by supercritical fluids (SEDS) method. Budesonide and ,-cyclodextrin (CD) solutions (50% or 99.5% ethanol) were pumped from the same (conventional method) or separate (modified method) containers together with supercritical carbon dioxide through a coaxial nozzle into a particle formation chamber. The pressure was maintained at 100, 150 or 200 bar with a temperature of 40, 60 or 80°C. SEDS-processed powders were characterised with HPLC, DSC and XRPD for budesonide content, complexation and crystallinity. The budesonide dissolution rate was determined in 1% ,-CD aqueous solution. Solid, white budesonide/,-CD complex particles were formed using the conventional and modified SEDS processes. The complexation efficiency was dependent on the processing conditions. For example, with the conventional method (100 bar, 60°C) the yield of the powder was 65,±,12% with 0.14,±,0.02 mg budesonide/mg powder, corresponding to 1:2 drug:CD molar ratio. The dissolution rate of this complexed budesonide (93,±,2% after 15 min) was markedly higher compared to unprocessed micronised budesonide (41,±,10%) and SEDS-processed budesonide without CD (61,±,3%). As a conclusion, SEDS is a novel method to produce solid drug/CD complexes in a single-step process. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2235,2245, 2006 [source] The problem of meeting dietary protein requirements in intensive aquaculture of marine fish larvae, with emphasis on Atlantic halibut (Hippoglossus hippoglossus L.)AQUACULTURE NUTRITION, Issue 3 2007A. KVÅLE Abstract Atlantic halibut (Hippoglossus hippoglossus) achieve a mature gastrointestinal tract approximately 2 months after first feeding (12 °C). The immature digestion may be the reason that compound diets fail to sustain growth and survival in first feeding halibut larvae and in larvae of other marine fish species. On the other hand, larvae fed with live feeds are capable of extraction of sufficient quantities of nutrients to sustain high growth rates. A lower availability of the protein in formulated diets compared with live prey is considered to be an important reason for the low performance of formulated diets. One approach to increase dietary protein availability is supplementation of pre-digested proteins. Experiments using tube fed individual larvae show that halibut larvae are able to utilize hydrolysed protein more efficiently than intact protein. However, Atlantic halibut in culture did not respond well to dietary supplementation of hydrolysed protein, in contrast to some other species. One reason may be extensive leaching of pre-hydrolysed proteins from the microparticulate feed. Atlantic halibut are slow feeders and may thus suffer more from nutrient leaching than species eating more rapidly. Feed formulation techniques affect dietary protein leaching, and in this paper, different techniques and their impact on feed properties are described. Microbound diets are most widely used in larval rearing, but show high rates of nutrient leaching. Lipid-based capsules seem to have the best potential to prevent leaching, however, they are not able to deliver a complete diet. The high need for improvements in larval feed formulation techniques are clearly stated, and some suggestions are given. Among these are production of complex particles, where small lipid-based capsules or liposomes containing the low molecular weight water-soluble nutrients are embedded. In such feed particles the water-soluble molecules are protected from leaching. Techniques for delivery of water-soluble nutrients that are needed in large quantities, i.e. free amino acids or hydrolysed and water-soluble protein, remain to be developed. [source] Interaction of ,-gliadin with polyanions: Design considerations for sequestrants used in supportive treatment of celiac diseaseBIOPOLYMERS, Issue 5 2010Li Liang Abstract Copolymers of sodium 4-styrene sulfonate (SS) and hydroxyethyl methacrylate (HEMA) were investigated as sequestrants of ,-gliadin, a gluten protein, for the treatment of gluten intolerance. The interactions of ,-gliadin with poly(SS) and poly(HEMA- co -SS) with 9 and 26 mol% SS content were studied at gastric (1.2) and intestinal (6.8) pH using circular dichroism and measurements of turbidity, dynamic light scattering and zeta potential. The interactions and their influence on ,-gliadin secondary and aggregated structures depended mainly on the ratio of polymer negative and protein positive charges at pH 1.2, and on polymer SS content at polymer concentrations providing in excess of negative charges at either pH. Poly(SS) could not form complex particles with ,-gliadin in a sufficient excess of negative charges. Copolymerization with HEMA enhanced the formation of complex particles. Poly(HEMA- co -SS) with intermediate SS content was found to be the most effective sequestrant for ,-gliadin. This study provides insight into design considerations for polymer sequestrants used in the supportive treatment of celiac disease. © 2009 Wiley Periodicals, Inc. Biopolymers 93:418,428, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |