Complex Microbial Community (complex + microbial_community)

Distribution by Scientific Domains


Selected Abstracts


Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function

ENVIRONMENTAL MICROBIOLOGY, Issue 8 2007
Wei E. Huang
Summary We have coupled fluorescence in situ hybridization (FISH) with Raman microscopy for simultaneous cultivation-independent identification and determination of 13C incorporation into microbial cells. Highly resolved Raman confocal spectra were generated for individual cells which were grown in minimal medium where the ratio of 13C to 12C content of the sole carbon source was incrementally varied. Cells which were 13C-labelled through anabolic incorporation of the isotope exhibited key red-shifted spectral peaks, the calculated ,red shift ratio' (RSR) being highly correlated with the 13C-content of the cells. Subsequently, Raman instrumentation and FISH protocols were optimized to allow combined epifluorescence and Raman imaging of Fluos, Cy3 and Cy5-labelled microbial populations at the single cell level. Cellular 13C-content determinations exhibited good congruence between fresh cells and FISH hybridized cells indicating that spectral peaks, including phenylalanine resonance, which were used to determine 13C-labelling, were preserved during fixation and hybridization. In order to demonstrate the suitability of this technology for structure,function analyses in complex microbial communities, Raman-FISH was deployed to show the importance of Pseudomonas populations during naphthalene degradation in groundwater microcosms. Raman-FISH extends and complements current technologies such as FISH-microautoradiography and stable isotope probing in that it can be applied at the resolution of single cells in complex communities, is quantitative if suitable calibrations are performed, can be used with stable isotopes and has analysis times of typically 1 min per cell. [source]


Development and application of a fatty acid based microbial community structure similarity index

ENVIRONMETRICS, Issue 4 2002
Alan Werker
Abstract This article presents an index of similarity that has application in monitoring relative changes of complex microbial communities for the purpose of understanding the impact of community instability in biological wastewater treatment systems. Gas chromatographic data quantifying microbial fatty acid esters extracted from biosolids samples can be used to infer the occurrence of changes in mixed culture community structure. One approach to rapidly assess the relative dissimilarity between samples is to calculate a similarity index scaled between 0 and 1. The many arbitrary scales that are associated with the available calculation methods for similarity indices limits the extent of application. Therefore, a specialized index of similarity was derived from consideration of the measurement errors associated with the chromatographic data. The resultant calculation method provides a clear mechanism for calibrating the sensitivity of the similarity index, such that inherent measurement variability is accommodated and standardization of scaling is achieved. The similarity index sensitivity was calibrated with respect to an effective gas chromatographic peak coefficient of variation, and this calibration was particularly important for facilitating comparisons made between different systems or experiments. The proposed index of similarity was tested with data acquired from a recently completed study of contaminant removal from pulp mill wastewater. The results suggest that this index can be used as a screening tool to rapidly process microbial fatty acid (MFA) compositional data, with the objective of making preliminary identification of underlying trends in (MFA) community structure, over time or between experimental conditions. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Monitoring the bacterial community during fermentation of sunki, an unsalted, fermented vegetable traditional to the Kiso area of Japan

LETTERS IN APPLIED MICROBIOLOGY, Issue 3 2008
A. Endo
Abstract Aims:, To investigate the microbial community in sunki, an indigenous, unsalted, fermented vegetable, made from the leaves of red beet. Methods and Results:, Fermenting samples were collected at 1- to 2-day intervals from four houses and investigated by culture-dependent and culture-independent techniques. PCR-Denaturing-Gradient-Gel-Electrophoresis profiles indicated that the bacterial community was stable and Lactobacillus delbrueckii, Lact. fermentum and Lact. plantarum were dominant during the fermentation. This result agreed well with that obtained by the culturing technique. Moulds, yeasts or bacteria other than lactic acid bacteria (LAB) were not detected. Conclusions:, The bacterial community was stable throughout the fermentation, and Lact. delbrueckii, Lact. fermentum and Lact. plantarum were dominant. The acidic pH and lactic acid produced by LAB probably preserve the sunki from spoilage. Significance and Impact of the Study:, This is the first report on the use of both culture-dependent and culture-independent techniques to study the bacterial community in sunki. A combination of culture-dependent and culture-independent techniques is necessary for the analysis of complex microbial communities. [source]


Phyllosphere microbiology with special reference to diversity and plant genotype

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2008
J.M. Whipps
Summary The phyllosphere represents the habitat provided by the aboveground parts of plants, and on a global scale supports a large and complex microbial community. Microbial interactions in the phyllosphere can affect the fitness of plants in natural communities, the productivity of agricultural crops, and the safety of horticultural produce for human consumption. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonists, which is influenced by numerous environmental factors in addition to leaf physico-chemical properties. The recent use of culture-independent techniques has demonstrated considerable previously unrecognized diversity in phyllosphere bacterial communities. Furthermore, there is significant recent evidence that plant genotype can play a major role in determining the structure of phyllosphere microbial communities. The main aims of this review are: (i) to discuss the diversity of phyllosphere microbial populations; (ii) to consider the processes by which microbes colonize the phyllosphere; (iii) to address the leaf characteristics and environmental factors that determine the survival and growth of colonists; (iv) to discuss microbial adaptations that allow establishment in the phyllosphere habitat and (v) to evaluate evidence for plant genotypic control of phyllosphere communities. Finally, we suggest approaches and priority areas for future research on phyllosphere microbiology. [source]


Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2008
D.G. Weber
Abstract Aims:, The design and evaluation of an oligonucleotide microarray in order to detect and identify viable bacterial species that play a significant role in beer spoilage. These belong to the species of the genera Lactobacillus, Megasphaera, Pediococcus and Pectinatus. Methods and Results:, Oligonucleotide probes specific to beer spoilage bacteria were designed. In order to detect viable bacteria, the probes were designed to target the intergenic spacer regions (ISR) between 16S and 23S rRNA. Prior to hybridization the ISR were amplified by combining reverse transcriptase and polymerase chain reactions using a designed consenus primer. The developed oligonucleotide microarrays allows the detection of viable beer spoilage bacteria. Conclusions:, This method allows the detection and discrimination of single bacterial species in a sample containing complex microbial community. Furthermore, microarrays using oligonucleotide probes targeting the ISR allow the distinction between viable bacteria with the potential to grow and non growing bacteria. Significance and Impact of the Study:, The results demonstrate the feasibility of oligonucleotide microarrays as a contamination control in food industry for the detection and identification of spoilage micro-organisms within a mixed population. [source]


Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2004
Y. Aoi
Abstract Aims:, To quantitatively analyse the changes to amoA mRNA (ammonia mono-oxygenase encoding mRNA) profiles in response to a change in ammonia oxidation activity in a complex microbial community. Methods and Results:, The amoA mRNA levels in both a batch-mode incubation and a continuously fed nitrification reactor were determined by real-time reverse transcription-PCR analysis. The amoA mRNA level changed rapidly in response to the change in environmental conditions which affect ammonia oxidation activity. Conclusion:, An increase in amoA mRNA level can be detected within 1,2 h in response to an initiation of cell activity whereas a decrease in amoA mRNA level is detected within 24 h in response to a cessation of activity. Significance and Impact of the Study:,amoA mRNA, which shows sensitive response to ammonia oxidation activity, can be used as a biomarker of ammonia oxidation activity in wastewater treatment processes where many bacterial species exist. [source]


Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts

MOLECULAR ECOLOGY, Issue 6 2007
S. NODA
Abstract A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms , termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut. [source]


Effects of oral commensal and pathogenic bacteria on human dendritic cells

MOLECULAR ORAL MICROBIOLOGY, Issue 2 2009
T. Chino
Background/aims:, The oral cavity harbors a diverse and complex microbial community. Bacteria accumulate on both the hard and soft oral tissues in sessile biofilms and engage the host in an intricate cellular dialog, which normally constrains the bacteria to a state of commensal harmony. Dendritic cells (DCs) are likely to balance tolerance and active immunity to commensal microorganisms as part of chronic inflammatory responses. While the role played by DCs in maintaining intestinal homeostasis has been investigated extensively, relatively little is known about DC responses to oral bacteria. Methods:, In this study, we pulsed human monocyte-derived immature DCs (iDCs) with cell wall extracts from pathogenic and commensal gram-positive or gram-negative oral bacteria. Results:, Although all bacterial extracts tested induced iDCs to mature and produce cytokines/chemokines including interleukin-12p40, tumor necrosis factor-,, and monocyte chemoattractant protein-1 (MCP-1), the most important factor for programming DCs by oral bacteria was whether they were gram-positive or gram-negative, not whether they were commensal or pathogenic. In general, gram-negative oral bacteria, except for periodontopathic Porphyromonas gingivalis, stimulated DC maturation and cytokine production at lower concentrations than gram-positive oral bacteria. The threshold of bacteria needed to stimulate chemokine production was 100-fold to 1000-fold lower than that needed to induce cytokines. In addition, very low doses of oral commensal bacteria triggered monocytes to migrate toward DC-derived MCP-1. Conclusion:, Oral commensal and pathogenic bacteria do not differ qualitatively in how they program DCs. DC-derived MCP-1 induced in response to oral commensal bacteria may play a role, at least in part, in the maintenance of oral tissue integrity by attracting monocytes. [source]