Home About us Contact | |||
Complex Micelles (complex + micelle)
Selected AbstractsEfficient Delivery of Bioactive Antibodies into the Cytoplasm of Living Cells by Charge-Conversional Polyion Complex Micelles,ANGEWANDTE CHEMIE, Issue 14 2010Yan Lee Dr. Nichts wie rein! Immunglobulin,G (IgG) kann nach Ladungsumkehr und Behandlung mit einem kationischen Blockcopolymer in Form von Polyionkomplex(PIC)-Micellen in das Plasma lebender Zellen eingebracht werden (siehe Bild). In der Zelle erlangt IgG in Abhängigkeit vom pH-Wert seine biologische Wirkung zurück, sodass das Wachstum humaner Hepatomzellen durch IgG-Bindung an intrazelluläre Zielmoleküle gesteuert werden kann. [source] Delivery of Nucleic Acids through the Controlled Disassembly of Multifunctional NanocomplexesADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Mahmoud Elsabahy Abstract In this study, novel pH-responsive polyion complex micelles (PICMs) were developed for the efficient delivery of nucleic acid drugs, such as antisense oligonucleotide (AON) and short interfering RNA (siRNA). The PICMs consisted of a poly(amidoamine) (PAMAM) dendrimer,nucleic acid core and a detachable poly(ethylene glycol)- block -poly(propyl methacrylate- co -methacrylic acid) (PEG- b -P(PrMA- co -MAA)) shell. The micelles displayed a mean hydrodynamic diameter ranging from 50 to 70,nm, a narrow size distribution, and a nearly neutral surface charge. They could be lyophilized without any additives and stored in dried form. Upon redispersion in water, no change in complexation efficiency or colloidal properties was observed. Entry of the micelles into cancers cells was mediated by a monoclonal antibody fragment positioned at the extremity of the PEG segment via a disulfide linkage. Upon cellular uptake and protonation of the MAA units in the acidic endosomal environment, the micelles lost their corona, thereby exposing their positively charged endosomolytic PAMAM/nucleic acid core. When these pH-responsive targeted PICMs were loaded with AON or siRNAs that targeted the oncoprotein Bcl-2, they exhibited a greater transfection activity than nontargeted PICMs or commercial PAMAM dendrimers. Moreover, their nonspecific cytotoxicity was lower than that of PAMAM. The pH-responsive PICMs reported here appear as promising carriers for the delivery of nucleic acids. [source] Effect of organic additives on formation and structure of polyelectrolyte-oppositely charged surfactant complexes,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11-12 2006J. A. Zakharova Abstract Effect of butanol and Triton X-100 on formation, supramolecular organization and local dynamics of poly(N -ethyl-4-vinylpyridinium)-dodecyl sulfate complexes have been studied by UV spectroscopy, high-speed sedimentation, laser light scattering and electron spin resonance (ESR) spectroscopy. It was found that solubilization of butanol promotes aggregation of the complex species in solution and results in contraction of the region in which water-soluble complexes are formed. On the contrary, highly aggregated complexes disaggregate up to molecularly dispersed state upon addition of Triton X-100. It was found that under the experimental conditions neither butanol (up to 3,wt%) nor Triton X-100 ([Triton X-100]/[sodium dodecylsulfate],,,1:1) cause destruction of the complexes. The results of ESR spin probe and spin label studies show that in both cases supramolecular realignments are accompanied by a slight increase of the local molecular mobility of surfactant ions in the complex micelles, segmental mobility of polyelectrolyte being unchanged. Copyright © 2006 John Wiley & Sons, Ltd. [source] Multifunctional siRNA delivery system: Polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptideBIOTECHNOLOGY PROGRESS, Issue 1 2010Sung Won Choi Abstract For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six-arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG-siRNA). The 6PEG-siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG-siRNA-Hph1). The 6PEG-siRNA-Hph1 conjugate was electrostatically complexed with cationic self-crosslinked fusogenic KALA peptide (cl-KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG-siRNA-Hph1/cl-KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA-MB-435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] |