Home About us Contact | |||
Complex I Inhibition (complex + i_inhibition)
Selected AbstractsHypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNSEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Sebastián Giusti Abstract NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia,reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0,2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain. [source] Ca2+ -induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex IJOURNAL OF NEUROCHEMISTRY, Issue 3 2005Tatyana V. Votyakova Abstract Mitochondrial complex I dysfunction has been implicated in a number of brain pathologies, putatively owing to an increased rate of reactive oxygen species (ROS) release. However, the mechanisms regulating the ROS burden are poorly understood. In this study we investigated the effect of Ca2+ loads on ROS release from rat brain mitochondria with complex I partially inhibited by rotenone. The addition of 20 nm rotenone to brain mitochondria increased ROS release. Ca2+ (100 µm) alone had no effect on ROS release, but greatly potentiated the effects of rotenone. The effect of Ca2+ was decreased by ruthenium red. Ca2+ -challenged mitochondria lose about 88% of their glutathione and 46% of their cytochrome c under these conditions, although this depends only on Ca2+ loading and not complex I inhibition. ADP in combination with oligomycin decreased the loss of glutathione and cytochrome c and free radical generation. Cyclosporin A alone was ineffective in preventing these effects, but augmented the protection provided by ADP and oligomycin. Non-specific permeabilization of mitochondria with alamethicin also increased the ROS signal, but only when combined with partial inhibition of complex I. These results demonstrate that Ca2+ can greatly increase ROS release by brain mitochondria when complex I is impaired. [source] Apoptosis-inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxinsANNALS OF NEUROLOGY, Issue 2 2010Celine Perier PhD Objective Mitochondrial complex I deficits have long been associated with Parkinson disease (PD). However, it remains unknown whether such defects represent a primary event in dopaminergic neurodegeneration. Methods Apoptosis-inducing factor (AIF) is a mitochondrial protein that, independently of its proapoptotic properties, plays an essential physiologic role in maintaining a fully functional complex I. We used AIF-deficient harlequin (Hq) mice, which exhibit structural deficits in assembled complex I, to determine whether primary complex I defects linked to AIF depletion may cause dopaminergic neurodegeneration. Results Despite marked reductions in mitochondrial complex I protein levels, Hq mice did not display apparent alterations in the dopaminergic nigrostriatal system. However, these animals were much more susceptible to exogenous parkinsonian complex I inhibitors, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Subtoxic doses of MPTP, unable to cause damage to wild-type animals, produced marked nigrostriatal dopaminergic degeneration in Hq mice. This effect was associated with exacerbated complex I inhibition and increased production of mitochondrial-derived reactive oxygen species (ROS) in Hq brain mitochondria. The antioxidant superoxide dismutase-mimetic compound tempol was able to reverse the increased susceptibility of Hq mice to MPTP. Supporting an instrumental role for mitochondrial-derived ROS in PD-related neurodegeneration, transgenic mice overexpressing mitochondrially targeted catalase exhibited an attenuation of MPTP-induced mitochondrial ROS and dopaminergic cell death. Interpretation Structural complex I alterations linked to AIF deficiency do not cause dopaminergic neurodegeneration but increase the susceptibility of dopaminergic neurons to exogenous parkinsonian neurotoxins, reinforcing the concept that genetic and environmental factors may interact in a common molecular pathway to trigger PD. ANN NEUROL 2010;68:184,192 [source] |