Complex Glycans (complex + glycan)

Distribution by Scientific Domains


Selected Abstracts


Characterization of peach thaumatin-like proteins and their identification as major peach allergens

CLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2010
A. Palacín
Summary Background Peach is the most important fruit related to food allergy in the Mediterranean area. Pru p 3, its lipid transfer protein, has been described as the principal allergen responsible for cross-reactivities with other foods and pollen and the severity of clinical symptoms. However, the involvement of other allergenic families cannot be ruled out. Thaumatin-like proteins (TLPs) have been described as food allergen in several fruits, such as apple, cherry, kiwi and banana, and pollen. Objective To identify members of the TLP family in peach fruit and to characterize putative allergens. Methods Through two-dimensional (2D) electrophoresis of peach extract and immunodetections with a pool of peach-allergic patients, IgE-binding spots were identified and the corresponding proteins purified and characterized as allergens by in vitro and in vivo assays. Three isoforms, belonging to the TLP family, were purified by different chromatographic systems and characterized by N -terminal amino acid sequences, molecular weight determination (MALDI) and enzymatic activity analysis (,-1,3-gluconase test and inhibition growth of fungi). In the same way, their IgE-binding capacity and allergenic activity were tested by ELISA assays, basophil activation tests and skin prick tests (SPT). Results Two peach-TLPs, Pru p 2.0101 and Pru p 2.0201, were identified as IgE-binding spots by 2D electrophoresis. Another peach-TLP, Pru p 2.0301, was cloned and produced as recombinant protein in a yeast system. The three isoforms were purified and characterized as TLPs by immunoblotting with anti-chestnut TLP antibodies and anti-plant N -asparagine complex glycan (anti-cross-reactive carbohydrate determinant). All of them showed ,-1,3-glucanase activity and inhibition of fungal growth. The three TLPs were recognized by around 50% of the sera from 31 patients analysed in ELISA experiments. All three gave a positive response to an SPT and/or in basophil activation experiments. Conclusion Three isoforms, belonging to the TLP family, were identified in peach as principal allergens. Their prevalence, observed in in vitro, ex vivo and in vivo analyses, suggests that they are important allergens and should therefore be included in the routine diagnosis of peach allergy, at least in the Mediterranean area. Cite this as: A. Palacín, L. Tordesillas, P. Gamboa, R. Sanchez-Monge, J. Cuesta-Herranz, M. L. Sanz, D. Barber, G. Salcedo and A. Díaz-Perales, Clinical & Experimental Allergy, 2010 (40) 1422,1430. [source]


Recombinant glycodelin carrying the same type of glycan structures as contraceptive glycodelin-A can be produced in human kidney 293 cellsbut not in Chinese hamster ovary cells

FEBS JOURNAL, Issue 15 2000
Ingrid M. Van den Nieuwenhof
We have produced human recombinant glycodelin in human kidney 293 cells and in Chinese hamster ovary (CHO) cells. Structural analyses by lectin immunoassays and fast atom bombardment mass spectrometry showed that recombinant human glycodelin produced in CHO cells contains only typical CHO-type glycans and is devoid of any of the N,N,- diacetyllactosediamine (lacdiNAc)-based chains previously identified in glycodelin-A (GdA). By contrast, human kidney 293 cells produced recombinant glycodelin with the same type of carbohydrate structures as GdA. The presence of a ,1,4- N- acetylgalactosaminyltransferase functioning in the synthesis of lacdiNAc-based glycans in human kidney 293 cells is concluded to be the cause of the occurrence of lacdiNAc-based glycans on glycodelin produced in these cells. Furthermore, human kidney 293 cells were found to be particularly suited for the production of recombinant glycodelin when they were cultured in high glucose media. Lowering the glucose concentration and the addition of glucosamine resulted in higher relative amounts of oligomannosidic-type glycans and complex glycans with truncated antennae. Human glycodelin is an attractive candidate for the development of a contraceptive agent, and this study gives valuable information for selecting the proper expression system and cell culture conditions for the production of a correctly glycosylated recombinant form. [source]


Glycan side chains on naturally presented MHC class II ligands

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2005
Jörn Dengjel
Abstract The molecular characterization of unknown naturally presented major histocompatibility complex (MHC) class II glycopeptides carrying complex glycans has so far not been achieved, reflecting the different fragmentation characteristics of sugars and peptides in mass spectrometric analysis. Human leukocyte antigen (HLA)-DR-bound peptides were isolated by affinity purification, separated via high performance liquid chromatography and analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. We were able to identify two naturally processed MHC class II ligands, CD53122,136 and CD53121,136, carrying complex N -linked glycan side chains by a combination of in-source and collision-induced fragmentation on a quadrupole time-of-flight tandem mass spectrometer. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Increasing the sialylation of therapeutic glycoproteins: The potential of the sialic acid biosynthetic pathway

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2009
Kaya Bork
Abstract The number of therapeutic proteins has increased dramatically over the past years and most of the therapeutic proteins in the market today are glycoproteins. Usually, recombinant glycoproteins are produced in mammalian cell lines, such as Chinese-hamster-ovary-cells to obtain mammalian-type of glycosylation. The terminal monosaccharide of N-linked complex glycans is typically occupied by sialic acid. Presence of this sialic acid affects absorption, serum half-life, and clearance from the serum, as well as the physical, chemical and immunogenic properties of the respective glycoprotein. From a manufacturing perspective, the degree of sialylation is crucial since sialylation varies the function of the product. In addition, insufficient or inconsistent sialylation is also a major problem for the process consistency. Sialylation of over-expressed glycoproteins in all mammalian cell lines commonly used in biotechnology for the production of therapeutic glycoproteins is incomplete and there is a need for strategies leading to homogenous, naturally sialylated glycoproteins. This review will shortly summarize the biosynthesis of sialic acids and describe some recent strategies to increase or modify sialylation of specific therapeutic glycoproteins. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3499,3508, 2009 [source]


Synthesis of enzymatically active human ,- l -iduronidase in Arabidopsis cgl (complex glycan-deficient) seeds

PLANT BIOTECHNOLOGY JOURNAL, Issue 2 2006
Willa L. Downing
Summary As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human ,- l -iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T2 seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 µg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 µg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans. [source]


Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-,(1,3)-fucose residues

PLANT BIOTECHNOLOGY JOURNAL, Issue 4 2004
Rajan Sriraman
Summary Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-,(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the ,-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium -infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-,(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides. [source]


Structural analysis of ,-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 13 2008
Yun-Gon Kim
Abstract The major barrier in transplantation of pig organs into humans is the presence of surface carbohydrate antigens (e.g., the Gal,1-3Gal,1-4GlcNAc-R (,-Gal) epitope) expressed on pig endothelial cells. In this study, total N -glycans from membrane glycoproteins derived from specific pathogen-free miniature pig kidney are identified by MALDI-TOF, negative ion ESI MS/MS and normal-phase HPLC (NP-HPLC) combined with exoglycosidase digestion. Over 100 N -glycans, including sialylated and neutral types, were identified. As well as the known ,-Gal antigens, some of these glycans contained novel non-Gal carbohydrate antigens such as (Neu5Gc-Gal-GlcNAc) and Gal,1-3Lewisx (Gal-Gal-(Fuc)GlcNAc) which have not been reported before in N -glycans from pig organs. The ability of MALDI, ESI, and HPLC to measure the relative proportions of the glycans was evaluated. The HPLC resolution was insufficient for accurate work and some minor differences were noted in the ionization efficiencies of different glycan groups when measured by the two mass spectrometric techniques. However, the results indicated that the relative quantity of ,-Gal epitope was in the region of 50% of the complex glycans. High-mannose type glycans were also abundant (35,43%) but appeared to be ionized more efficiently than the complex glycans by ESI than by MALDI. [source]