Complex Dissociation (complex + dissociation)

Distribution by Scientific Domains


Selected Abstracts


Hepatitis B virus markers in anti-HBc only positive individuals,

JOURNAL OF MEDICAL VIROLOGY, Issue 3 2001
Bernard Weber
Abstract Isolated reactivity to hepatitis B virus (HBV) core antigen (anti-HBc) is observed relatively frequently in immunocompromised individuals, intravenous drug abusers (IVDA), and in the presence of HCV infection. The reason for the lack of HBsAg is not clear. The aim of the present study was to investigate which factors (genetic variability of S gene, low-level HBsAg, and immune complexes may be responsible for the failure of HBsAg detection with commercial HBsAg screening assays. Dilution series of two recombinant HBsAg escape mutants and dilutions of serum samples from chronic HBV carriers with multiple insertions in the a determinant and different HBsAg subtypes were tested with a highly sensitive assay that detects wild-type HBsAg (Elecsys HBsAg, Roche Diagnostics, Penzberg, Germany) and two assays that detect HBV wild-type and escape mutants (Murex HBsAg Version 3, Murex and Enzygnost HBsAg 5.0, Dade Behring, Marburg, Germany). Elecsys HBsAg showed in comparison to Murex HBsAg Version 3 and Enzygnost HBsAg 5.0 a reduced sensitivity for escape mutant detection. On the other hand, the best performance for HBsAg subtype detection was obtained with Elecsys HBsAg. In the second part of the study, a selected panel of isolated anti-HBc reactive (n,=,104) serum samples (AxSYM Core) was submitted to testing by Elecsys HBsAg, Murex HBsAg Version 3, Enzygnost HBsAg 5.0, and HBsAg detection after immune complex dissociation (ICD) and anti-HBs determination with two different assays (AxSYM Ausab and Elecsys Anti-HBs). To assess the specificity of anti-HBc test results, all the samples were tested by a second anti-HBc assay (Elecsys Anti-HBc). Quantitative HBV DNA detection was undertaken with a commercially available HBV PCR assay (Amplicor HBV Monitor). HCV infection was present in 65.4% of anti-HBc only reactive individuals. Five AxSYM Core positive samples were negative by Elecsys Anti-HBc. Overall, 15 (14.4%) AxSYM Ausab negative samples gave positive results with Elecsys Anti-HBs (median value: 21 IU/ml). No low-level HBsAg carrier was detected among the isolated anti-HBc reactive individuals with Elecsys HBsAg. There was no evidence for the presence of immune complexes. Only one sample was repeatedly reactive by the Murex HBsAg, suggesting that the a mutant form of HBsAg was responsible for the isolated anti-HBc reactivity, however neutralisation assay was not interpretable and HBV DNA PCR was negative. Fifteen (14.4%) anti-HBc only positive individuals were HBV DNA carriers with concentrations ranging from 800 to more than >4,000,000 copies of viral DNA/ml. In conclusion, the most probable explanations for isolated anti-HBc reactivity in our study group are a possible interference of HBsAg synthesis by HCV infection (65.4%) and divergence of results of anti-HBs assays (14.4%). There is no evidence for the presence of low-level HBsAg carriers and immune complexes. HBsAg mutants cannot be excluded definitively by the test strategy used in the present evaluation. J. Med. Virol. 64:312,319, 2001. © 2001 Wiley-Liss, Inc. [source]


Specificity and reactive loop length requirements for crmA inhibition of serine proteases

PROTEIN SCIENCE, Issue 2 2005
Lisa D. Tesch
Abstract The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (,102,104 M,1sec,1), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (kdiss ,10,7 sec,1), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (kcat/KM of ,106 M,1 sec,1). N-terminal sequencing confirmed that the P1 Arg,P1,Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1,Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases ,10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (105,106 M,1sec,1), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1,Cys,P2,Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites. [source]


Determining the topology of virus assembly intermediates using ion mobility spectrometry,mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2010
Tom W. Knapman
We have combined ion mobility spectrometry,mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Multiple crystal forms of the cell-wall invertase inhibitor from tobacco support high conformational rigidity over a broad pH range

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2006
Michael Hothorn
Plant acid invertases catalyse the breakdown of sucrose. Their activity is tightly regulated through interaction with specific protein inhibitors. The complex between the cell-wall invertase inhibitor Nt-CIF and its target enzyme is stable only at acidic pH, as found in the plant cell wall. Since the pH in this compartment can be modulated between pH 4 and 6 in planta, the rapid dissociation of the inhibitor,enzyme complex at neutral pH may represent a regulatory event. Here, it is analyzed whether the inhibitory component undergoes structural rearrangements upon changes in the pH environment. Six crystal forms grown at pH 4.6,9.5 and diffracting up to 1.63,Å indicate only small structural changes in CIF. This suggests that complex dissociation at neutral pH is mediated either by rearrangements in the enzyme or by a complex pattern of surface charges in the inhibitor,enzyme binding interface. [source]