Home About us Contact | |||
Complete Reproductive Isolation (complete + reproductive_isolation)
Selected AbstractsSEX CHROMOSOME LINKAGE OF MATE PREFERENCE AND COLOR SIGNAL MAINTAINS ASSORTATIVE MATING BETWEEN INTERBREEDING FINCH MORPHSEVOLUTION, Issue 5 2010Sarah R. Pryke Assortative mating is a key aspect in the speciation process because it is important for both initial divergence and maintenance of distinct species. However, it remains a challenge to explain how assortative mating evolves when diverging populations are undergoing gene flow (e.g., during hybridization). Here I experimentally test how assortative mating is maintained with frequent gene flow between diverged head-color morphs of the Gouldian finch (Erythrura gouldiae). Contrary to the predominant view on the development of sexual preferences in birds, cross-fostered offspring did not imprint on the phenotype of their conspecific (red or black morphs) or heterospecific (Bengalese finch) foster parents. Instead, the mating preferences of F1 and F2 intermorph-hybrids are consistent with inheritance on the Z chromosomes, which are also the location for genes controlling color expression and the genes causing low fitness of intermorph-hybrids. Genetic associations between color signal and preference loci on the sex chromosomes may prevent recombination from breaking down these associations when the morphs interbreed, helping to maintain assortative mating in the face of gene flow. Although sex linkage of reproductively isolating traits is theoretically expected to promote speciation, social and ecological constraints may enforce frequent interbreeding between the morphs, thus preventing complete reproductive isolation. [source] Differentiation of morphology, genetics and electric signals in a region of sympatry between sister species of African electric fish (Mormyridae)JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2008S. LAVOUÉ Abstract Mormyrid fishes produce and sense weak electric organ discharges (EODs) for object detection and communication, and they have been increasingly recognized as useful model organisms for studying signal evolution and speciation. EOD waveform variation can provide important clues to sympatric species boundaries between otherwise similar or morphologically cryptic forms. Endemic to the watersheds of Gabon (Central Africa), Ivindomyrus marchei and Ivindomyrus opdenboschi are morphologically similar to one another. Using morphometric, electrophysiological and molecular characters [cytochrome b sequences and amplified fragment length polymorphism (AFLP) genotypes], we investigated to what extent these nominal mormyrid species have diverged into biological species. Our sampling covered the known distribution of each species with a focus on the Ivindo River, where the two taxa co-occur. An overall pattern of congruence among datasets suggests that I. opdenboschi and I. marchei are mostly distinct. Electric signal analysis showed that EODs of I. opdenboschi tend to have a smaller initial head-positive peak than those of I. marchei, and they often possess a small third waveform peak that is typically absent in EODs of I. marchei. Analysis of sympatric I. opdenboschi and I. marchei populations revealed slight, but significant, genetic partitioning between populations based on AFLP data (FST , 0.04). Taken separately, however, none of the characters we evaluated allowed us to discriminate two completely distinct or monophyletic groups. Lack of robust separation on the basis of any single character set may be a consequence of incomplete lineage sorting due to recent ancestry and/or introgressive hybridization. Incongruence between genetic datasets in one individual, which exhibited a mitochondrial haplotype characteristic of I. marchei but nevertheless fell within a genetic cluster of I. opdenboschi based on AFLP genotypes, suggests that a low level of recent hybridization may also be contributing to patterns of character variation in sympatry. Nevertheless, despite less than perfect separability based on any one dataset and inconclusive evidence for complete reproductive isolation between them in the Ivindo River, we find sufficient evidence to support the existence of two distinctive species, I. opdenboschi and I. marchei, even if not ,biological species' in the Mayrian sense. [source] Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plantJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2005G. Nies Abstract Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant. [source] Mayr's view of Darwin: was Darwin wrong about speciation?BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2008JAMES MALLET We commonly read or hear that Charles Darwin successfully convinced the world about evolution and natural selection, but did not answer the question posed by his most famous book, ,On the Origin of Species ,'. Since the 1940s, Ernst Mayr has been one of the people who argued for this point of view, claiming that Darwin was not able to answer the question of speciation because he failed to define species properly. Mayr undoubtedly had an important and largely positive influence on the study of evolution by stimulating much evolutionary work, and also by promoting a ,polytypic species concept' in which multiple, geographically separated forms may be considered as subspecies within a larger species entity. However, Mayr became seduced by the symmetry of a pair of interlocking ideas: (1) that coexistence of divergent populations was not possible without reproductive isolation and (2) reproductive isolation could not evolve in populations that coexist. These beliefs led Mayr in 1942 to reject evidence of the importance of intermediate stages in speciation, particularly introgression between hybridizing species, which demonstrates that complete reproductive isolation is not necessary, and the existence of ecological races, which shows that ecological divergence can be maintained below the level of species, in the face of gene flow. Mayr's train of thought led him to the view that Darwin misunderstood species, and that species were fundamentally different from subspecific varieties in nature. Julian Huxley, reviewing similar data at the same time, came to the opposite conclusion, and argued that these were the intermediate stages of speciation expected under Darwinism. Mayr's arguments were, however, more convincing than Huxley's, and this caused a delay in the acceptance of a more balanced view of speciation for many decades. It is only now, with new molecular evidence, that we are beginning to appreciate more fully the expected Darwinian intermediates between coexisting species. © The Author. Journal compilation © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 3,16. [source] |