Complete Mortality (complete + mortality)

Distribution by Scientific Domains


Selected Abstracts


Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna straus

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2005
Sebastián Reynaldi
Abstract This study compares lethal and sublethal responses of Daphnia magna Straus exposed to fenvalerate continuously (21 d) and as a pulse (24 h). Survival was reduced more severely in the continuous- than in the pulse-exposure regime. Complete mortality occurred at 1 ,g/L for continuous exposure and at 3.2 ,g/L for pulse exposure. Regarding reproductive endpoints, fenvalerate delayed the age at first reproduction. At the beginning of the reproductive phase (day 10), this delay resulted in a reduction of the neonates per living female at similar concentrations in both exposure regimes (0.3 and 0.1 ,g/L for continuous and pulse exposure, respectively). The population growth rate was inhibited in continuous and pulse exposure at 0.3 and 0.6 ,g/L, respectively. However, the effects of fenvalerate in the pulse exposure were transient. After 21 d, a recovery to values close to the controls occurred with respect to the total neonates per female and the population growth rate over a broad range of concentrations from 0.1 up to 1 ,g/L. In contrast, no substantial recovery occurred in the continuous-exposure regime. [source]


Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2004
T. Peter Lowe
Abstract We evaluated the susceptibility of Galerucella calmariensis, a species used to control purple loosestrife (Lythrum salicaria), to three mosquito control larvicides. Larvae and adults were fed loosestrife cuttings dipped in Abate® (,375 g · L,1), Altosid® (,250 g · L,1), and Bacillus thuringiensis var israeliensis (Bti) (<110 g · L,1). Eggs on cuttings were dipped in the same concentrations. Pupae were immersed in Abate and Altosid solutions (,474.4 ,g · L,1 and ,1,169.2 ,g · L,1, respectively). Hatching success of eggs dipped in Abate (,3.75 g · L,1) was reduced significantly and survival was significantly lower among larvae and adults eating cuttings dipped in Abate (,0.17 g · L,1 and ,2.27 g · L,1, respectively). Hatching success of eggs dipped in Altosid (,2.52 g · L,1) was reduced significantly. With exposure to Altosid, larval survival to pupation and adult emergence was reduced significantly at concentrations of ,2.92 g · L,1 and ,0.63 g · L,1, respectively. Altosid (,0.23 g · L,1) also delayed the onset of pupation and adult emergence among larvae that survived to pupate. Larvae that survived with exposure to Altosid (,1.72 g · L,1) grew to 70% larger than those exposed to lower concentrations. Pupal survival was unaffected with exposure to Abate and Altosid and adult survival was unaffected with exposure to Altosid. Bacillus thuringiensis var israeliensis did not adversely affect any life stage of G. calmariensis. The mean Abate concentration on cuttings exposed to operational spraying was in the range that reduced egg hatchability and adult survival but was higher than concentrations that caused complete mortality of larvae. The mean Altosid concentration on cuttings exposed to operational spraying was in the range that reduced hatching success in eggs and delayed pupation and adult emergence of larvae. [source]


Effects of ultraviolet radiation on the eggs of landlocked Galaxias maculatus (Galaxiidae, Pisces) in northwestern Patagonia

FRESHWATER BIOLOGY, Issue 3 2000
M. Battini
Summary 1Ultraviolet radiation (UVR) damages early life stages of several fish species. Galaxias maculatus is a small catadromous fish, with landlocked forms occurring in many lakes within the Nahuel Huapi National Park (Patagonia, Argentina). In this work, the vulnerability of G. maculatus eggs exposed to both natural and artificial UVR was investigated in relation to water transparency. 2Field experiments were performed in two lakes differing in UVR attenuation. Galaxias maculatus eggs were exposed to in situ levels of UVR in quartz tubes incubated at various depths. For laboratory experiments, the eggs were exposed to five levels of artificial UVB radiation. 3Exposure to natural UVR causes various degrees of egg mortality depending on water transparency and incubation depth. In the less transparent lake (Kd320 = 3.08 m -1), almost complete mortality was observed near the surface. At a depth of 43 cm the observed mortality was only 22%, but was still significantly different from the dark control. In the most transparent lake (Kd320 = 0.438 m -1), almost total mortality was observed in tubes incubated at 2.56 m or shallower. A gradual decline in mortality was recorded from that depth to 3.78 m where the values approached those in the dark control treatments. 4A monotonic relationship between mortality and UV exposure could be observed both in field and laboratory experiments. Using the results from field incubations, a LD50 of 2.5 J cm -2 nm -1 was estimated. In a few mountain lakes, this value would be exceeded even if the eggs were laid at the maximum depth of the lake. Thus UVR seems a sufficient cause to explain the absence of G. maculatus populations in some mountain lakes. For most lakes, however, UVR is probably one of several important environmental factors, which together determine the habitat suitability. [source]


The impact of aphicide drenches on Micromus tasmaniae (Walker) (Neuroptera: Hemerobiidae) and the implications for pest control in lettuce crops

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2006
Peter G Cole
Abstract, The recent arrival of lettuce aphid (Nasonovia ribis-nigri (Mosley) ) in Australia has resulted in a pesticide-based protection program based upon seedling drenches of imidacloprid being promoted by many advisory agencies and accepted by growers as the only option available. This has caused concern about potential for incompatibility with existing integrated pest management programs for other pests in lettuce. Two neonicotinoid insecticides, imidacloprid (Confidor 200SC) and thiamethoxam (Actara), were applied to lettuce seedlings by drenching. A model aphid (Macrosiphum euphorbiae (Thomas) ), used because N. ribis-nigri was not present in mainland Australia at that time, was periodically released onto the seedlings over 10 weeks. The effects of imidacloprid and thiamethoxam on larvae of predatory brown lacewings (Micromus tasmaniae (Walker) ) which fed on the aphids were measured over 10 weeks by bioassay. Imidacloprid applied at a rate of 11 mL active ingredient (ai) per 1000 seedlings and thiamethoxam applied at 0.5 g ai per 1000 seedlings were highly toxic to M. tasmaniae that consumed aphids from the seedlings for up to 4 weeks after application. A 1/10 rate of imidacloprid (1.1 mL ai per 1000 seedlings) caused moderate toxicity for 3 weeks, and was then harmless to M. tasmaniae. Thiamethoxam and the high rate of imidacloprid caused almost complete mortality of aphids for about 6 weeks after application, and the low rate of imidacloprid displayed similarly high activity for about 3 weeks. [source]