Complete Model (complete + model)

Distribution by Scientific Domains


Selected Abstracts


TOWARD A MORE COMPLETE MODEL OF OPTIMAL CAPITAL STRUCTURE

JOURNAL OF APPLIED CORPORATE FINANCE, Issue 1 2002
Roger Heine
Most corporate finance practitioners understand the trade-off involved in making effective use of debt capacity while safeguarding the firm's ability to execute its business strategy without disruption. But quantifying that trade-off to arrive at an optimal level of debt can be a complicated and challenging task. This paper develops a simulation model of capital structure that starts by generating multiple estimates of market rates (LIBOR, currency rates) and corresponding company operating cash flows. To arrive at an optimal capital structure, the model then incorporates the shareholder value effects of alternative financing decisions by directly measuring the costs of financial distress, including the costs of missed investment opportunities and higher working capital requirements. The model generates both a target credit rating and a lower fallback rating that permits a higher level of debt to maintain investments and dividends when operating cash flows are weak. As the model shows, companies with volatile cash flows and significant investment opportunities can add substantial shareholder value by establishing a fallback credit rating that is one or two notches below the target rating. The model also optimizes the mix of fixed versus floating debt, the maturity structure, and the currency composition. Another distinctive feature of the model is its ability to estimate the expected cost of alternative liability structures that can provide the liquidity insurance necessary to sustain the firm through periods of severe stress. This cost turns out to be quite small relative to the total market capitalization of the average firm. [source]


A Multiresolution Model for Soft Objects Supporting Interactive Cuts and Lacerations

COMPUTER GRAPHICS FORUM, Issue 3 2000
Fabio Ganovelli
Performing a really interactive and physically-based simulation of complex soft objects is still an open problem in computer animation/simulation. Given the application domain of virtual surgery training, a complete model should be quite realistic, interactive and should enable the user to modify the topology of the objects. Recent papers propose the adoption of multiresolution techniques to optimize time performance by representing at high resolution only the object parts considered more important or critical. The speed up obtainable at simulation time are counterbalanced by the need of a preprocessing phase strongly dependent on the topology of the object, with the drawback that performing dynamic topology modification becomes a prohibitive issue. In this paper we present an approach that couples multiresolution and topological modifications, based on the adoption of a particle systems approach to the physical simulation. Our approach is based on a tetrahedral decomposition of the space, chosen both for its suitability to support a particle system and for the ready availability of many techniques recently proposed for the simplification and multiresolution management of 3D simplicial decompositions. The multiresolution simulation system is designed to ensure the required speedup and to support dynamic changes of the topology, e.g. due to cuts or lacerations of the represented tissue. [source]


A design-variable-based inelastic hysteretic model for beam,column connections

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2008
Gun Jin Yun
Abstract This paper presents a design-variable-based inelastic hysteretic model for beam,column connections. It has been well known that the load-carrying capacity of connections heavily depends on the types and design variables even in the same connection type. Although many hysteretic connection models have been proposed, most of them are dependent on the specific connection type with presumed failure mechanisms. The proposed model can be responsive to variations both in design choices and in loading conditions. The proposed model consists of two modules: physical-principle-based module and neural network (NN)-based module in which information flow from design space to response space is formulated in one complete model. Moreover, owing to robust learning capability of a new NN-based module, the model can also learn complex dynamic evolutions in response space under earthquake loading conditions, such as yielding, post-buckling and tearing, etc. Performance of the proposed model has been demonstrated with synthetic and experimental data of two connection types: extended-end-plate and top- and seat-angle with double-web-angle connection. Furthermore, the design-variable-based model can be customized to any structural component beyond the application to beam,column connections. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams

FRESHWATER BIOLOGY, Issue 1 2007
SYLVAIN DOLÉDEC
Summary 1. Relating processes occurring at a local scale to the natural variability of ecosystems at a larger scale requires the design of predictive models both to orientate stream management and to predict the effects of larger scale disturbances such as climate changes. Our study contributes to this effort by providing detailed models of the hydraulic preferences of 151 invertebrate taxa, mostly identified at the species level. We used an extensive data set comprising 580 invertebrate samples collected using a Surber net from nine sites of second and third order streams during one, two or three surveys at each site. We used nested non-linear mixed models to relate taxon local densities to bed shear stresses estimated from FliesswasserStammTisch hemisphere numbers. 2. An average model by taxon, i.e. independent from surveys, globally explained 25% of the density variations of taxa within surveys. A quadratic relationship existed between the average preferences and the niche breadth of taxa, indicating that taxa preferring extreme hemisphere numbers had a reduced hydraulic niche breadth. A more complete model, where taxa preferences vary across surveys, globally explained 38% of the variation of taxa densities within surveys. Variations in preferences across surveys were weak for taxa preferring extreme hemisphere numbers. 3. There was a significant taxonomic effect on preferences computed from the complete model. By contrast, season, site, average hemisphere number within a survey and average density of taxa within a survey used as covariates did not consistently explain shifts in taxon hydraulic preferences across surveys. 4. The average hydraulic preferences of taxa obtained from the extensive data set were well correlated to those obtained from two additional independent data sets collected in other regions. The consistency of taxon preferences across regions supports the use of regional preference curves for estimating the impact of river management on invertebrate communities. By contrast, the hydraulic niche breadths of taxa computed from the different data sets were not related. [source]


Application of thermodynamics to the global modelling of shallow foundations on frictional material

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2001
Y. Le Pape
Abstract Soil,shallow foundation interaction has been theoretically analysed within the framework of thermomechanics. The design of a global interaction model has been achieved with an original treatment of the Clausius,Duhem inequality. The role of the gravity volume forces is emphasized. The paper is focused on a strip footing based on dense sand and subjected to time-independent plastic processes. The theoretical approach has confirmed that an associated global flow rule cannot be expected to hold true. The analysis of the sources of dissipation has led to the development of a soil,footing interface model and a complete interaction model accounting for the interface constraints and the intrinsic frictional properties of the soil. Finally, the abilities of the complete model are checked by comparisons with experimental results found in the literature. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Accurate model of InxGa1,xAsyP1,y/InP active waveguides for optimal design of switches

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 2 2003
V. Petruzzelli
Abstract Both the longitudinal and transverse charge diffusion terms in the rate equations as well as the spreading effect of the injected charge in the active layer are taken into account for a complete model of active twin ridge InGaAsP/InP-waveguides. A dedicated computer code, relying on an optimized beam propagation method (BPM) based on the method of lines (MoL,BPM), is written. The computer code is used for the optimal design of a travelling-wave switch and to simulate the bidirectional propagation for the design of a Fabry,Perot switch. This last switch version is more compact with respect to the travelling wave (TW) version because a reduction of the switch length of about 20% is gained. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Recent advances of neural network-based EM-CAD

INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 5 2010
Humayun Kabir
Abstract In this article, we provide an overview of recent advances in computer-aided design techniques using neural networks for electromagnetic (EM) modeling and design applications. Summary of various recent neural network modeling techniques including passive component modeling, design and optimization using the models are discussed. Training data for the models are generated from EM simulations. The trained neural networks become fast and accurate models of EM structures. The models are then incorporated into various optimization methods and commercially available circuit simulators for fast design and optimization. We also provide an overview of recently developed neural network inverse modeling technique. Training a neural network inverse model directly may become difficult due to the nonuniqueness of the input,output relationship in the inverse model. Training data containing multivalued solutions are divided into groups according to derivative information. Multiple inverse submodels are built based on divided data groups and are then combined to form a complete model. Comparison between the conventional EM-based design approach and the inverse design approach has also been discussed. These computer-aided design techniques using neural models provide circuit level simulation speed with EM level accuracy avoiding the high computational cost of EM simulation. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010. [source]


EMDR: A putative neurobiological mechanism of action

JOURNAL OF CLINICAL PSYCHOLOGY, Issue 1 2002
Robert Stickgold
Numerous studies have provided evidence for the efficacy of eye movement desensitization and reprocessing therapy (EMDR) in the treatment of posttraumatic stress disorder (PTSD), including recent studies showing it to be more efficient than therapist-directed flooding. But few theoretical explanations of how EMDR might work have been offered. Shapiro, in her original description of EMDR, proposed that its directed eye movements mimic the saccades of rapid eye movement sleep (REM), but provided no clear explanation of how such mimicry might lead to clinical improvement. We now revisit her original proposal and present a complete model for how EMDR could lead to specific improvement in PTSD and related conditions. We propose that the repetitive redirecting of attention in EMDR induces a neurobiological state, similar to that of REM sleep, which is optimally configured to support the cortical integration of traumatic memories into general semantic networks. We suggest that this integration can then lead to a reduction in the strength of hippocampally mediated episodic memories of the traumatic event as well as the memories' associated, amygdala-dependent, negative affect. Experimental data in support of this model are reviewed and possible tests of the model are suggested. © 2002 John Wiley & Sons, Inc. J Clin Psychol 58: 61,75, 2002. [source]


Heat and mass transfer during microwave-convective drying

AICHE JOURNAL, Issue 1 2010
Stefan J. Kowalski
Abstract The article presents a mathematical model of drying that describes the kinetics of combined microwave-convective drying for the process as a whole. Based on this model, the drying curves and the temperature evolutions of the drying body were constructed by a number of computer-simulated drying programs, which were chosen to follow the respective experimental processes carried out on a cylindrical sample made of kaolin. The experimental data allowed both the estimate of material coefficients arising in the model and the validation of the theory. A very satisfactory correlation of the theoretical predictions with the experimental data is found. The main novelty of this article is the mathematically complete drying model that describes all periods of the microwave-convective drying process. Application of such a complete model is necessary if we want to optimize drying processes with respect to drying time and consumption of energy via computer simulations. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Monte Carlo model of UV-radiation interaction with TiO2 -coated spheres

AICHE JOURNAL, Issue 10 2007
Gustavo E. Imoberdorf
Abstract Photocatalysis is one of the advanced oxidation techniques that are being studied for the treatment of polluted air and water from different sources. From a kinetic point of view, photocatalytic reaction rates are strongly dependent not only on the reactant and product concentrations, but also on the rate of photon absorption. Unfortunately, the local rate of photon absorption is usually difficult to evaluate because of (i) the inherent complexity of the system and (ii) the lack of data concerning the photocatalyst optical properties. The final objective of this project is focused on the development of a complete model of the radiation field; the bed structure, and the flow pattern to describe the operation of a fixed bed photocatalytic reactor. In this article, the interaction between radiative energy and TiO2 -coated fused-silica sphere beds was studied. The proposed model was built applying the Monte Carlo method, taking into account the complex reflection/refraction/absorption interactions between radiation and the packed bed. To obtain experimental measurements, an ad hoc device was designed and built. This device allows us to validate the proposed radiation model, and to obtain the optical parameters of the composite photocatalyst, i.e., the refractive index and the surface rough index of the fused-silica spheres, as well as the refractive index and the optical thickness of the TiO2 films. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]


Phasing power at the K absorption edge of organic arsenic

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2003
Pascal Retailleau
Single/multiple-wavelength anomalous dispersion (SAD/MAD) experiments were performed on a crystal of an organic arsenic derivative of hen egg-white lysozyme. A para -arsanilate compound used as a crystallizing reagent was incorporated into the ordered solvent region of the lysozyme molecule. Diffraction data were collected to high resolution (,2.0,Å) at three wavelengths around the K edge (1.04,Å) of arsenic at beamline BM30A, ESRF synchrotron. Anomalous Patterson maps clearly showed the main arsanilate site to be between three symmetry-related lysozyme molecules, at a location previously occupied by a para -toluenesulfonate anion. MAD phases at 2,Å derived using the program SHARP led to an electron-density map of sufficient quality to start manual building of the protein model. Amplitudes from a second crystal measured to a resolution of 1.8,Å at the peak wavelength revealed two additional heavy-atom sites, which reinforced the anomalous subset model and therefore dramatically improved the phasing power of the arsenic derivative. The subsequent solvent-flattened map was of such high accuracy that the program ARP/wARP was able to build a nearly complete model automatically. This work emphasizes the great potential of arsenic for de novo structure determination using anomalous dispersion methods. [source]


Numerische Modellierungen mit einem zyklisch-viskoplastischen Stoffansatz für granulare Böden

BAUTECHNIK, Issue 1 2005
vormals Universität Kassel Tim Stöcker Dr.-Ing.
In der Geotechnik, insbesondere aber im Verkehrswegebau, gewinnt die Frage der Boden-Bauwerk-Interaktion bei nichtruhenden Lasteinwirkungen zunehmend an Bedeutung. Dabei stehen neben sicherheitsrelevanten Aspekten besonders Fragen zur Gebrauchstauglichkeit sowie wirtschaftliche Aspekte im Vordergrund. Ziel einer anwendungsorientierten Forschung muß daher die Entwicklung eines praxisorientierten Verfahrens zur ingenieurmäßigen Modellierung der Langzeitverformungen bzw. des Langzeitverhaltens des Baugrundes unter nichtruhender Belastung sein. Die dargestellten Arbeiten beschäftigen sich daher mit der Implementierung, Validierung und Anwendung eines neuen, im folgenden als "zyklisch-viskoplastisch" bezeichneten Stoffansatzes für granulare Böden unter nichtruhender Lasteinwirkung. Die wesentlichen Grundlagen dieses Ansatzes sind dabei im Heft 4, 2004, dieser Zeitschrift beschrieben, [1]. Das erreichte Ziel war, den Stoffansatz für numerische Berechnungsmodelle ingenieurmäßig aufzubereiten, zu implementieren, sowie das Berechnungsmodell zu verifizieren und auf reale Problemstellungen anzuwenden. Numerical modelling with a cyclic viscoplastic constitutive approach for granular soils. In modern Geotechnics, especially in track engineering, research for soil-structure interaction under cyclic loading has been gaining importance over the past decades. Next to states of system/structure failure, the long-term (deformation) behaviour is of major interest, as it has a major impact on e.g. maintenance costs in track engineering. Hence, the objective of this work is to be seen in the necessity of investigations on the long-term deformation behaviour of granular soils and ballast under cyclic loading. In the present paper the validation and implementation of a cyclic viscoplastic constitutive approach for granular under cyclic dynamic loading, [1], into a numerical model is carried out. The investigation and set up of a theoretical and physical complete model has not been intended. The objective rather is the development of an engineering type model, appropriate for practical tasks. Some modelling examples are given to illustrate modelling capacities. [source]


Mechanical Deformation of Compressible Chromatographic Columns

BIOTECHNOLOGY PROGRESS, Issue 3 2002
R. N. Keener
A one-dimensional model of mechanical deformation of compressible chromatography columns is presented. The model is based on linear elasticity and continuum mechanics and is compared to a more complete two-dimensional model and one-dimensional porosity profiles measured by NMR imaging methods. The model provides a quantitative description of compression and the effects of wall support during scale-up. A simple criterion for the significance of wall support as a function of both diameter and length is also developed. Although the model accounts only for mechanical deformation, flow compression can be included, and validation presented here suggests that a more complete model may be valuable for anticipating the effects of scale and aspect ratio on pressure-flow behavior of compressible columns. [source]