Complete Lesion (complete + lesion)

Distribution by Scientific Domains


Selected Abstracts


Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000
Jean Michel Brezun
Abstract The long-term effects of hippocampal serotonergic denervation and reinnervation by foetal raphe tissue were examined in the dentate gyrus where neurons are continously born in the adult. Complete lesion of serotonin neurons following injections of 5,7-dihydroxytryptamine in the dorsal and medial raphe nuclei produced long-term decreases in the number of newly generated granule cells identified with 5-Bromo-2,-deoxyuridine (BrdU) and the polysialylated form of neural cell adhesion molecule (PSA-NCAM) immunostaining, as observed in 2-month-survival rats. The raphe grafts, but not the control grafts of embryonic spinal tissue, reversed the postlesion-induced decreases in the density of BrdU- and PSA-NCAM-labelled cells detected in the granule layer. Inhibition of serotonin synthesis in animals with raphe grafts reversed back to lesion-induced changes in granule cell proliferation. Furthermore, extensive serotonergic reinnervation of the dentate gyrus in the area proximal to the raphe graft could be associated with supranormal density of BrdU-labelled cells. These results indicate that serotonin may be considered a positive regulatory factor of adult granule cell proliferation. Finally, the lack of effect of embryonic nonserotonergic tissue grafted to serotonin-deprived rats suggests that neurotrophic factors may not be involved in the effects of serotonin on adult neurogenesis. [source]


Does the cingulate cortex contribute to spatial conditional associative learning in the rat?

HIPPOCAMPUS, Issue 7 2009
Marie St-Laurent
Abstract Rats with lesions to the anterior or posterior (retrosplenial) region of the cingulate cortex and rats with lesions that included both the anterior and posterior cingulate cortex were tested on a visual,spatial conditional task in which they had to learn to approach one of the two objects depending on the spatial context within which they were embedded. Lesions restricted to either the anterior or the retrosplenial cingulate region did not impair learning of this task which is known to be very sensitive to the effects of hippocampal lesions. Complete lesions of the cingulate cortex gave rise to only a minor retardation in learning. In contrast, lesions to the retrosplenial cortex impaired performance on a spatial navigation task and the classic radial maze. These results suggest that the retrosplenial portion of the cingulate region forms part of a hippocampal circuit underlying learning about spatial responses. The dissociation between the effects of lesions of the cingulate region on different classes of behavior known to be associated with hippocampal function suggests that, although this neural structure does play a role in an extended hippocampal circuit underlying spatial learning, its role in such learning may be a selective one. © 2009 Wiley-Liss, Inc. [source]


Evaluation of simple and complex sensorimotor behaviours in rats with a partial lesion of the dopaminergic nigrostriatal system

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000
Pascal Barnéoud
Abstract We have examined the behavioural consequences of a partial unilateral dopaminergic denervation of the rat striatum. This partial lesion was obtained by an intrastriatal 6-hydroxy-dopamine injection (6-OHDA, 20 or 10 ,g divided between two injection sites) and was compared with a unilateral complete lesion resulting from an injection of 6-OHDA (2 × 6 ,g) into the medial forebrain bundle. Quantification of striatal dopamine (DA) and its metabolites, and the immunohistochemical evaluation of the nigrostriatal DA system confirmed the complete and partial lesions. Animals with complete striatal denervation displayed both apomorphine- and amphetamine-induced rotations whereas the partial denervation elicited amphetamine-induced rotations only. However, the rates of amphetamine-induced rotation were not correlated with the size of the lesion. In contrast, the paw-reaching impairments were significantly correlated with the striatal dopaminergic depletion. When evaluated in the staircase test, animals with partial denervation were impaired exclusively for the paw contralateral to the side of the lesion. This motor deficit (50,75%) included all components of the skilled paw use (i.e. attempt, motor coordination and success) and was observed at least 12 weeks after the lesion. However, these animals were able to perform normal stepping adjustments with the impaired paw, indicating that the partial lesion induced a coordination deficit of the paw rather than a deficit of movement initiation. After a complete lesion, stepping adjustments of the contralateral paw were dramatically impaired (by 80%), an akinesia which almost certainly accounted for the great deficit in skilled paw use. The paw-reaching impairments resulting from the partial striatal denervation are proposed as a model of the early symptoms of Parkinson's disease and may be useful for the development of restorative therapies. [source]


Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling: A numerical simulation

LASERS IN SURGERY AND MEDICINE, Issue 2 2006
Wangcun Jia PhD
Abstract Background and Objectives Although cryogen spray cooling (CSC) in conjunction with laser therapy has become the clinical standard for treatment of port wine stain (PWS) birthmarks, the current approach does not produce complete lesion blanching in the vast majority of patients. The objectives of this study are to: (1) experimentally determine the dynamic CSC heat flux when a skin phantom is preheated, and (2) numerically study the feasibility of using skin preheating prior to CSC to improve PWS laser therapeutic outcome. Study Design/Materials and Methods A fast-response thin-foil thermocouple was used to measure the surface temperature and thus heat flux of an epoxy skin phantom during CSC. Using the heat flux as a boundary condition, PWS laser therapy was simulated with finite element heat diffusion and Monte Carlo light distribution models. Epidermal and PWS blood vessel thermal damage were calculated with an Arrhenius-type kinetic model. Results Experimental results show that the skin phantom surface can be cooled to a similar minimum temperature regardless of the initial temperature. Numerical simulation indicates that upon laser irradiation, the epidermal temperature increase is virtually unaffected by preheating, while higher PWS blood vessel temperatures can be achieved. Based on the damage criterion we assumed, the depth and maximum diameter of PWS vessels that can be destroyed irreversibly with skin preheating are greater than those without. Conclusions Skin preheating prior to CSC can maintain epidermal cooling while increasing PWS blood vessel temperature before laser irradiation. Numerical models have been developed to show that patients may benefit from the skin preheating approach, depending on PWS vessel diameter and depth. Lasers Surg. Med. 38:155,162, 2006. © 2006 Wiley-Liss, Inc. [source]


Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2004
Helen H. J. Pothuizen
Abstract Lesions restricted to the dorsal, but not the ventral, hippocampus severely impair the formation of spatial memory. This dissociation was first demonstrated using the water maze task. The present study investigated whether the dorsal and the ventral hippocampus are involved differentially in spatial reference and spatial working memory using a four-baited/four-unbaited version of the eight-arm radial maze task. This test allows the concurrent evaluation of reference and working memory with respect to the same set of spatial cues, and thereby enables a within-subjects within-task comparison between the two forms of memory functions. Rats with N -methyl- d -aspartic acid-induced excitotoxic lesions of the dorsal hippocampus, ventral hippocampus or both were compared with sham and unoperated controls. We showed that dorsal lesions were as effective as complete lesions in severely disrupting both reference and working spatial memory, whereas rats with ventral lesions performed at a level comparable with controls. These results lend further support to the existence of a functional dissociation between the dorsal and the ventral hippocampus, with the former being preferentially involved in spatial learning. [source]