Home About us Contact | |||
Competition Intensity (competition + intensity)
Selected AbstractsCompetitive effects of grasses and woody plants in mixed-grass prairieJOURNAL OF ECOLOGY, Issue 4 2001Duane A. Peltzer Summary 1,Variation in the competitive ability of plant species may determine their persistence and abundance in communities. We quantified the competitive effects of grasses and woody plants in native mixed-grass prairie on the performance of transplant species and on resources. 2,We separated the effects of grasses, shrubs and intact vegetation containing both grasses and shrubs by manipulating the natural vegetation using selective herbicides to create four neighbourhood treatments: no neighbours (NN), no shrubs (NS), no grasses (NG) and all neighbours (AN). Treatments were applied to 2 × 2 m experimental plots located in either grass- or shrub-dominated habitats. The effects of grasses and shrubs on resource availability (light, soil moisture, soil available nitrogen) and on the growth of transplants of Bouteloua gracilis, a perennial tussock grass, and Elaeagnus commutata, a common shrub, were measured over two growing seasons. 3,Resource availability was two- to fivefold higher in no neighbour (NN) plots than in vegetated plots (NS, NG, AN) with grasses and shrubs having similar effects. Light penetration declined linearly with increasing grass or shrub biomass, to a minimum of about 30% incident light at 500 g m,2 shoot mass. Soil resources did not decline with increasing neighbour shoot or root mass for either grasses or shrubs, suggesting that the presence of neighbours was more important than their abundance. 4,Transplant growth was significantly suppressed by the presence of neighbours, but not by increasing neighbour shoot or root biomass, except for a linear decline in Bouteloua growth with increasing neighbour shoot mass in plots containing only shrubs. Competition intensity, calculated as the reduction in transplant growth by neighbours, was similar in both grass- and shrub-dominated habitats for transplants of Bouteloua, but was less intense in shrub-dominated habitats for the shrub Elaeagnus. Variation in the persistence and abundance of plants in communities may therefore be more strongly controlled by variation in the competitive effects exerted by neighbours than by differences in competitive response ability. [source] Intensity and Importance of Competition for a Grass (Festuca rubra) and a Legume (Trifolium pratense) Vary with Environmental ChangesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2008Junyan Zhang Abstract How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculture and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is. [source] Stress tolerance abilities and competitive responses in a watering and fertilization field experimentJOURNAL OF VEGETATION SCIENCE, Issue 6 2005P. Liancourt Abstract Question: Do water gradients produce patterns of responses to stress and competition similar to those induced by nutrient gradients? Location: French Alps. Methods: We established a split-plot design in a calcareous grassland, with watering and fertilization as main plot treatments and competition as subplot treatment. We followed individual and competitive responses of transplants of the three potential dominant grass species: Bromus erectus, Brachypodium rupestre and Arrhenatherum elatius, in all plots during two growing seasons. Changes in natural relative abundances of the three grass species were also monitored. Results: The growth and the relative abundance of A. elatius were primarily stimulated by nutrient addition and those of B. rupestre by water addition, whereas B. erectus decreased in abundance and had a very low flexibility with enhanced resource supply. Competition intensity increased for all species with both watering and fertilization and the ranking in competitive responses did not change with treatments: A. elatius > B. rupestre > B. erectus. Conclusions: Patterns of dominance were efficiently explained by stress tolerance abilities and competitive responses for dry and poor sites, and wet and rich sites for B. erectus and A. elatius respectively, whereas competitive responses were poor predictors of dominance for B. rupestre in wet and nutrient-poor sites. Further studies are needed to assess the potential role of other processes, such as increasing competitive effect on light with increasing age as well as interference, to explain the dominance of this conservative competitor type of species in wet and nutrient-poor sites. [source] Preferenced Trading, Quote Competition, and Market Quality: Evidence from Decimalization on the NYSEFINANCIAL REVIEW, Issue 3 2010Wei Huang G14; G18 Abstract We examine the impact of decimalization on preferenced trading in NYSE-listed stocks and show a significant decline in preferenced trading around decimalization. For the largest NYSE stocks, the total decline is nearly 22%. We also find a negative correlation between the changes in preferenced trading and the changes in quote competition intensity, and a positive correlation between the changes in preferenced trading and the changes in spreads. Consistent with the cream skimming hypothesis, we find that abnormal changes in information asymmetry cost for NYSE trades are positively correlated with the changes in preferenced trading. [source] Intraspecific seed trait variations and competition: passive or adaptive response?FUNCTIONAL ECOLOGY, Issue 3 2009Cyrille Violle Summary 1The phenotype of offspring depends on the abiotic and biotic environment in which the parents developed. However, the direct effects of competition experienced by parent plants on single-seed traits are poorly documented despite their impact on plant fitness. 2We hypothesize that single-seed traits can differentially respond to the resource deficiencies of parent plants due to competition: seed quality may decrease as seed number does, magnifying the negative effects of competition for offspring (,passive response' hypothesis), or increase and then enhance offspring fitness to offset the reduction in offspring number (,adaptive response' hypothesis). Here we tested these hypotheses for four single-seed traits. We assessed the sensibility of their responses to changes in competition intensity due to species with different competitive effects and to contrasting soil nitrogen conditions. 3In a common-garden experiment, four single-seed traits related to fitness , seed mass, seed nitrogen concentration (SNC), germinability and the timing of germination , were measured on a phytometer species transplanted in 14 different neighbours grown in monoculture with and without soil nitrogen limitation. 4Under nitrogen-limiting conditions, the responses of SNC and of the timing of germination were passive and mainly related to the effects of neighbours on soil nitrogen availability, as shown by the increase in SNC with N-fixing neighbours. Within-individual seed mass variability decreased with increasing competition intensity, as an adaptive response to counterbalance the reduction in seed production. With nitrogen supplementation, competitors had no detectable effect on single-seed traits despite an overall increase in SNC and germination rate, confirming their nitrogen-dependent passive responses to competition. Germinability did not change among treatments. 5The impact of competition on single-seed traits depends on both phytometer trait identity and resource modulation by neighbours. The passive response of seed chemical composition to competitors may magnify the competitive effects on offspring. By contrast, the adaptive response of seed size variability may offset these competitive effects. As a consequence, experiments looking at the fitness consequences of competition should not only consider the effects on fitness parameters of a target plant but also on the offspring. [source] Co-evolution of male and female reproductive traits across the Bruchidae (Coleoptera)FUNCTIONAL ECOLOGY, Issue 5 2008P. F. Rugman-Jones Summary 1Despite the obvious importance of spermatozoa to individual reproductive success a general explanation of variation in spermatozoan form and function is still lacking. In species with internal fertilization, sperm not only have to interact with the physical and biochemical environment of the female reproductive tract, but frequently face competition from the sperm of rival males. Both sperm competition theory and adaptation to the selective environment of the female reproductive tract have been implicated in the evolution of spermatozoan morphological diversity. 2Using the comparative method, we examine variation in sperm length in relation to (i) sperm competition intensity (as measured by relative testis size) and (ii) female reproductive characters, across 15 species of beetle belonging to the family Bruchidae. 3Stepwise multiple regression within a phylogenetic framework revealed sperm length to be positively correlated with female spermathecal duct length and negatively related to spermathecal volume, but not testes size, indicating that the female reproductive environment rather than sperm competition per se exerts selection on sperm length in this taxonomic group. 4A positive association between testes volume and the volume of the female spermatheca was also evident suggesting correlated evolution of these traits. 5A number of models of sexual selection could lead to the correlated evolution of male and female reproductive characters, although the underlying mechanisms of cause and effect remain elusive. Divergence between species (and populations) in primary reproductive traits is likely to present a significant barrier to hetero-specific fertilization, and thus contribute to reproductive isolation. [source] Relating juvenile spatial distribution to breeding patterns in anadromous salmonid populationsJOURNAL OF ANIMAL ECOLOGY, Issue 2 2010Anders Foldvik Summary 1. Spatial within-population heterogeneity in density probably affects competition intensity and may have a fundamental role in shaping population dynamics and carrying capacity. This may be particularly relevant for organisms where limitations on juvenile mobility cause maternal choice of breeding locations to influence the spatial distribution of younger life stages. 2. In this study, we mapped redd locations and the resulting densities of juveniles the following year along the entire reach (9·2 km) of a river holding natural populations of anadromous salmonids (Atlantic salmon and brown trout). These data were used to quantify the spatial scale over which breeding influences juvenile densities, and hence becomes important for density-dependent processes. 3. Although the observed cumulative distributions indicated a relatively uniform distribution of breeding along the river, autocorrelation analyses identified spatial patchiness of both breeding and resulting juveniles on a local scale. Furthermore, cross-correlations suggested a close spatial relationship between distribution of redds and juveniles. 4. Using spatially explicit hockey-stick stock,recruitment functions, we found juvenile salmonid density to be mostly influenced by the amount of breeding upstream of a given location. This influence decreased rapidly within the first 75,150 m. Thus, female choice with regard to breeding location gave rise to a heterogeneous distribution of offspring on a spatial scale of almost two orders of magnitude finer than that of the whole population (9·2 km). 5. The results are consistent with smaller scale experimental studies of salmonids, and emphasize the role for maternal choice of breeding locations in causing substantial spatial heterogeneity in juvenile densities within natural populations. Due to effects of density heterogeneity on overall levels of competition, this adds another layer of complexity to the dynamics of salmonid populations even in populations where breeding appears to be relatively uniformly distributed through space, and potentially also for a range of other organisms where juvenile dispersal is constrained. [source] An experimental test for effects of the maternal environment on delayed germinationJOURNAL OF ECOLOGY, Issue 5 2010Katja Tielbörger Summary 1.,Recent models on bet-hedging germination in annual plants assume a negative relationship between the proportion of offspring that germinate and the quality of the maternal environment. An increase in the proportion of seeds remaining dormant in the next year, when produced in seasons with high reproduction may result from selection that avoids overcrowding in the following year. 2.,We present the first empirical test of this prediction by utilizing a field experiment in Israel which manipulated the entire maternal environment. We subjected semi-arid and Mediterranean annual plant communities to different rainfall treatments: control, reduced and increased rainfall. We then related maternal environment quality to offspring germination fractions for three focal species in two consecutive seasons. 3.,There was a negative relationship between the quality of the maternal environment and offspring germination fraction in four out of twelve cases. The negative relationship was stronger for the least competitive species and in the environment with high competition intensity, supporting the role of competition for the observed pattern. 4.,Our results suggest that competition with all neighbours is more likely to explain the pattern than sib competition. 5.,Synthesis. Our findings provide the first experimental evidence of a highly reliable cue (productivity of maternal environment) that allows for plants to respond to their future biotic environment. There is an urgent need for testing predictions of theoretical models in natural populations and for incorporating the role of density dependence in studies of bet-hedging germination. [source] Measuring the components of competition along productivity gradientsJOURNAL OF ECOLOGY, Issue 2 2007MARK V. WILSON Summary 1Controversy surrounds the measurement of competition intensity. Moreover, when biomass varies systematically along productivity and other environmental gradients, common indices of competitive outcome mask important ecological interactions. 2This study presents two indices derived from how neighbours interact with target plants. The first, relative crowding, increases directly with the abundance of neighbours present and decreases inversely with the potential size and vigour of the target plant itself. The second, interaction strength, is the integral of suppression of the target by neighbours over the range of neighbour abundance. Relative crowding and interaction strength are derived independently, but when multiplied produce the commonly used relative competitive index, showing the biological underpinnings of the relative competition index in terms of crowding and strength of interaction. Since the new indices of relative crowding and interaction strength explicitly account for the amount of neighbour biomass, they serve as a valid method to track the effects of changing habitat conditions on the components of competition. 3The new indices are applied to three published data sets. In each case, relative crowding increased with standing crop. In one case competition was reported as unchanged along a productivity gradient, whereas the new indices show that relative crowding and interaction strength both had significant patterns, but their effects were counteracting. These results do not fit current theories of competition. Further empirical studies are needed to see if competition theory needs revision. 4Separating the mechanisms of competition into relative crowding and strength of interaction reveals previously hidden patterns that help bring to light underlying processes of competition along productivity gradients. [source] Root competition: beyond resource depletionJOURNAL OF ECOLOGY, Issue 4 2006H. JOCHEN SCHENK Summary 1Root competition is defined as a reduction in the availability of a soil resource to roots that is caused by other roots. Resource availability to competitors can be affected through resource depletion (scramble competition) and by mechanisms that inhibit access of other roots to resources (contest competition, such as allelopathy). 2It has been proposed that soil heterogeneity can cause size-asymmetric root competition. Support for this hypothesis is limited and contradictory, possibly because resource uptake is affected more by the amount and spatial distribution of resource-acquiring organs, relative to the spatial distribution of resources, than by root system size per se. 3Root competition intensity between individual plants generally decreases as resource availability (but not necessarily habitat productivity) increases, but the importance of root competition relative to other factors that structure communities may increase with resource availability. 4Soil organisms play important, and often species-specific, roles in root interactions. 5The findings that some roots can detect other roots, or inert objects, before they are contacted and can distinguish between self and non-self roots create experimental challenges for those attempting to untangle the effects of self/non-self root recognition, self-inhibition and root segregation or proliferation in response to competition. Recent studies suggesting that root competition may represent a ,tragedy-of-the-commons' may have failed to account for this complexity. 6Theories about potential effects of root competition on plant diversity (and vice versa) appear to be ahead of the experimental evidence, with only one study documenting different effects of root competition on plant diversity under different levels of resource availability. 7Roots can interact with their biotic and abiotic environments using a large variety of often species-specific mechanisms, far beyond the traditional view that plants interact mainly through resource depletion. Research on root interactions between exotic invasives and native species holds great promise for a better understanding of the way in which root competition may affect community structure and plant diversity, and may create new insights into coevolution of plants, their competitors and the soil community. [source] Intensity and Importance of Competition for a Grass (Festuca rubra) and a Legume (Trifolium pratense) Vary with Environmental ChangesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2008Junyan Zhang Abstract How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculture and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is. [source] Reproductive Allocation Patterns in Different Density Populations of Spring WheatJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2008Jing Liu Abstract The effects of increased intraspecific competition on size hierarchies (size inequality) and reproductive allocation were investigated in populations of the annual plant, spring wheat (Triticum aestivum). A series of densities (100, 300, 1 000, 3 000 and 10 000 plants/m2) along a gradient of competition intensity were designed in this experiment. The results showed that average shoot biomass decreased with increased density. Reproductive allocation was negatively correlated to Gini coefficient (R2 = 0.927), which suggested that reproductive allocation is inclined to decrease as size inequality increases. These results suggest that both vegetative and reproductive structures were significantly affected by intensive competition. However, results also indicated that there were different relationships between plant size and reproductive allocation pattern in different densities. In the lowest density population, lacking competition (100 plants/m2), individual reproductive allocation was size independent but, in high density populations (300, 1 000, 3 000 and 10 000 plants/m2), where competition occurred, individual reproductive allocation was size dependent: the small proportion of larger individuals were winners in competition and got higher reproductive allocation (lower marginal reproductive allocation; MRA), and the larger proportion of smaller individuals were suppressed and got lower reproductive allocation (higher MRA). In conclusion, our results support the prediction that elevated intraspecific competition would result in higher levels of size inequality and decreased reproductive allocation (with a negative relationship between them). However, deeper analysis indicated that these frequency- and size-dependent reproductive strategies were not evolutionarily stable strategies. [source] Changes in plant interactions along a gradient of environmental stressOIKOS, Issue 1 2001Francisco I. Pugnaire A combination of competition and facilitation effects operating simultaneously among plant species appears to be the rule in nature, where these effects change along productivity gradients often in a non-proportional manner. We investigated changes in competition and facilitation between a leguminous shrub, Retama sphaerocarpa, and its associate understorey species along an environmental gradient in semi-arid southeast Spain. Our results show a change in the net balance of the interaction between the shrub and several of its associated species, from clearly positive in the water-stressed, infertile environment to neutral or even negative in the more fertile habitat. There was a weakening of facilitation along the fertility gradient as a consequence of improved abiotic conditions. Competition was the most intense for below-ground resources in the less fertile environment while total competition tended to increase towards the more productive end of the gradient. Changes in the balance of the interaction between and among different plant species along the gradient of stress were caused by a decline in facilitation rather than by a change in competition. As both competition intensity and facilitation change along gradients of resource availability, plant interactions are best viewed as dynamic relationships, the outcome of which depends on abiotic conditions. [source] Density-Induced Plant Size Reduction and Size Inequalities in Ethylene-Sensing and Ethylene-Insensitive TobaccoPLANT BIOLOGY, Issue 2 2004R. Pierik Abstract: Plant competition for light is a commonly occurring phenomenon in natural and agricultural vegetations. It is typically size-asymmetric, meaning that slightly larger individuals receive a disproportionate share of the light, leaving a limited amount of light for the initially smaller individuals. As a result, size inequalities of such stands increase with competition intensity. A plant's ability to respond morphologically to the presence of neighbour plants with enhanced shoot elongation, the so-called shade avoidance response, acts against the development of size inequalities. This has been shown experimentally with transgenic plants that cannot sense neighbours and, therefore, show no shade avoidance responses. Stands of such transgenic plants showed a much stronger development of size inequalities at high plant densities than did wild type (WT) stands. However, the transgenic plants used in these experiments displayed severely hampered growth rates and virtually no response to neighbours. In order to more precisely study the impact of this phenotypic plasticity on size inequality development, experiments required plants that have normal growth rates and reduced, but not absent, shade avoidance responses. We made use of an ethylene-insensitive, transgenic tobacco genotype (Tetr) that has wild type growth rates and moderately reduced shade avoidance responses to neighbours. Here, we show that the development of size inequalities in monocultures of these plants is not affected unambiguously different from wild type monocultures. Plots of Tetr plants developed higher inequalities for stem length than did WT, but monocultures of the two genotypes had identical CV (Coefficient of Variance) values for shoot biomass that increased with plant density. Therefore, even though reduced shade avoidance capacities led to the expected higher size inequalities for stem length, this does not necessarily lead to increased size inequalities for shoot biomass. [source] Success Factors in New Ventures: A Meta-analysis,THE JOURNAL OF PRODUCT INNOVATION MANAGEMENT, Issue 1 2008Michael Song Technology entrepreneurship is key to economic development. New technology ventures (NTVs) can have positive effects on employment and could rejuvenate industries with disruptive technologies. However, NTVs have a limited survival rate. In our most recent empirical study of 11,259 NTVs established between 1991 and 2000 in the United States, we found that after four years only 36 percent, or 4,062, of companies with more than five full-time employees, had survived. After five years, the survival rate fell to 21.9 percent, leaving only 2,471 firms still in operation with more than five full-time employees. Thus, it is important to examine how new technology ventures can better survive. In the academic literature, a number of studies focus on success factors for NTVs. Unfortunately, empirical results are often controversial and fragmented. To get a more integrated picture of what factors lead to the success or failure of new technology ventures, we conducted a meta-analysis to examine the success factors in NTVs. We culled the academic literature to collect data from existing empirical studies. Using Pearson correlations as effect size statistics, we conducted a meta-analysis to analyze the findings of 31 studies and identified the 24 most widely researched success factors for NTVs. After correcting for artifacts and sample size effects, we found that among the 24 possible success factors identified in the literature, 8 are homogeneous significant success factors for NTVs (i.e., they are homogeneous positive significant metafactors that are correlated to venture performance): (1) supply chain integration; (2) market scope; (3) firm age; (4) size of founding team; (5) financial resources; (6) founders' marketing experience; (7) founders' industry experience; and (8) existence of patent protection. Of the original 24 success factors, 5 were not significant: (1) founders' research and development (R&D) experience; (2) founders' experience with start-ups; (3) environmental dynamism; (4) environmental heterogeneity; and (5) competition intensity. The remaining 11 success factors are heterogeneous. For those heterogeneous success factors, we conducted a moderator analysis. Of this set, three appeared to be success factors, and two were failure factors for subgroups within the NTVs' population. To facilitate the development of a body of knowledge in technology entrepreneurship, this study also identifies high-quality measurement scales for future research. The article concludes with future research directions. [source] Seeking a sound index of competitive intensity: Application to the study of biomass production under elevated CO2 along a nitrogen gradientAUSTRAL ECOLOGY, Issue 4 2002MARIE-LAURE MAYAS Abstract The aim of this paper is to evaluate (i) the relevance of currently proposed measures of competitive intensity to elevated CO2 studies by means of an example analysis, hypothesizing that competitive intensity is increased under elevated CO2; and (ii) an alternative method for predicting species performance in mixtures from monocultures. Relative competition intensity (RCI), relative physiological performance and normalized ecological performance were used to characterize the competitive ability of two grasses (Danthonia riclwrdsonii Cashmore, Phalaris aquatica L.) and two legumes (Lotus pedunculatus Cav, Trifoliuni repens L.) grown in monocultures and mixtures of the four species along a N gradient under conditions of ambient and elevated CO2. Relative competition intensity could not be used to predict competitive outcomes in mixtures under conditions of elevated CO2 because it failed to account for changes in the size of interspecific differences along the N gradient and between CO2 concentrations. Relative physiological performance and relative ecological performance were more useful for investigating biomass production in mixtures and to predict species performance in mixtures from their performance in monocultures. Both indices of relative performance showed an increase in competitive intensity under elevated CO2 conditions. They also showed a decrease in competitive intensity with increasing N supply over most of the range of N supply, but a reversal of that trend at high levels of N supply. The merits and utility of these relative performance indices for elevated CO2 are discussed. [source] The evolution of male mate choice in insects: a synthesis of ideas and evidenceBIOLOGICAL REVIEWS, Issue 3 2001RUSSELL BONDURIANSKY ABSTRACT Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating p to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to ,precopulatory' male mate choice, some insects exhibit ,cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating p are those that tend to maximize a male's expected fertilization success from each mating. Such p tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform (,mating investment'). Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating p have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways. [source] |