Compressive Strength (compressive + strength)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Compressive Strength

  • high compressive strength
  • unconfined compressive strength


  • Selected Abstracts


    Laboratory strength of glass ionomer and zinc phosphate cements

    JOURNAL OF PROSTHODONTICS, Issue 3 2001
    Andree Piwowarczyk Dr med dent
    Purpose The present in vitro study examined 3 mechanical properties, namely compressive, flexural, and diametral tensile strength, of various commercially available cements and core materials as a function of time after mixing. Materials and Methods The examined materials were 2 cermet cements (Ketac Silver [ESPE, Seefeld, Germany] and Chelon Silver [ESPE]), 1 metal-reinforced glass ionomer cement (Miracle Mix [GC Dental Industrial Corp, Tokyo, Japan]), 2 conventional glass ionomer cements (Ketac Bond [ESPE] and Ketac Cem [ESPE]), 1 standard cure zinc phosphate cement (Harvard Cement [Richter and Hoffmann, Berlin, Germany]), and 1 zinc phosphate cement with the addition of 30% silver amalgam alloy powder (Harvard Cement 70% with Dispersalloy 30% [Richter and Hoffmann/Johnson and Johnson, East Windsor, NJ]). Properties were measured using a universal testing machine at 15 minutes, 1 hour, and 24 hours after first mixing. Results Compressive strengths varied widely between the 3 times of measurement from 5.8 ± 6.6 MPa for Ketac Cem to 144.3 ± 10.2 MPa for Ketac Silver. Twenty-four hours after mixing, the Bonferroni test showed significant (p, .01) differences between Ketac Silver and all other materials tested. Diametral tensile strengths ranged widely from 4.4 ± 0.9 MPa for Ketac Cem to 11.5 ± 2.2 MPa for Chelon Silver. At 15 minutes, 1 hour, and 24 hours after first mixing, the analysis of variance did not show any significant differences between Ketac Silver, Chelon Silver, and Miracle Mix. The 3-point flexural strength of Ketac Silver showed, at 15 minutes with 13.5 ± 3.9 MPa and at 24 hours with 27.2 ± 7.4 MPa, the highest values. Conclusions Setting time influences the mechanical properties of the materials tested in this study. Ketac Silver, a glass ionomer cement reinforced with sintered glass-silver particles, showed the highest mechanical properties of the examined materials. [source]


    Failure Mechanism of Deformed Concrete Tunnels Subject to Diagonally Concentrated Loads

    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 6 2009
    Wei He
    Based on the experimental findings, an extended discussion is carried out to select a rational compressive model for concrete that represents the dominant failure modes of deformed concrete tunnels. Three main dominant final failure modes are described: structural failure due to the plastic rotation of softening hinges, tensile failure caused by localized cracks, and material failure due to concrete deterioration. A parametric analysis of the material properties of concrete shows that the compressive strength of concrete has a dominant effect on the load-carrying capacity, although the compressive fracture energy of concrete remarkably influences the post-peak deformation behavior of the tunnel. Moreover, the soil pressure, which is regarded as a distributed external load, plays an important role in controlling the final failure modes and the deformation behavior of concrete tunnels. The size effect on the load-carrying capacities of different-sized concrete tunnels is also discussed based on the numerical simulations. [source]


    Flexural deformation capacity of rectangular RC columns determined by the CAE method

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2006
    Iztok Peru
    Abstract A non-parametric empirical approach, called the conditional average estimator (CAE) method, has been implemented for the estimation of the flexural deformation capacity of reinforced concrete rectangular columns expressed in terms of the ultimate (,near collapse') drift. Two databases (PEER and Fardis), which represent subsets of the original databases, were used. Four input parameters were employed in the basic model: axial load index, index related to confinement, shear span index, and concrete compressive strength. The results of analyses suggest that, in general, ultimate drift decreases with increasing axial load index, and increases with better confinement. An increase in the shear span-to-depth ratio has a beneficial effect until a turning point is reached. After that the opposite trend can be observed, i.e. a decrease in the ultimate drift with further increasing of the shear span-to-depth ratio. No clear trend is observed in the case of concrete compressive strength. The predictions, obtained by using the Fardis database are in general somewhat larger than the predictions from the PEER database, due to the difference in the definition of ultimate drift. The scatter of results is large. The local coefficient of variation, which is a measure for dispersion, amounts to about 0.2,0.5. The ultimate drifts obtained by using the two databases, were compared with the values predicted by the Eurocode 8 empirical formula. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    An efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structures

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2006
    K. V. Spiliopoulos
    Abstract Most of the finite element analyses of reinforced concrete structures are restricted to two-dimensional elements. Three-dimensional solid elements have rarely been used although nearly all reinforced concrete structures are under a triaxial stress state. In this work, a three-dimensional solid element based on a smeared fixed crack model that has been used in the past mainly for monotonic static loading analysis is extended to cater for dynamic analysis. The only material parameter that needs to be input for this model is the uniaxial compressive strength of concrete. Steel bars are modelled as uniaxial elements and an embedded formulation allows them to have any orientation inside the concrete elements. The proposed strategy for loading or unloading renders a numerical procedure which is stable and efficient. The whole process is applied to two RC frames and compared against existing experiments in the literature. Results show that the proposed approach may adequately be used to predict the dynamic response of a structure. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Low Temperature Fabrication of ,-TCP,PCL Nanocomposites for Bone Implants,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2010
    Michael Bernstein
    Abstract A method to fabricate strong bioresorbable calcium phosphate,polymer nanocomposites with low polymer content without exposing the material to excessively high-processing temperatures is reported. Dense ,-TCP-based nanocomposites containing 5 or 15,vol% of uniformly distributed polycaprolactone (PCL) polymer were obtained by mixing ,-TCP nanopowder with PCL dissolved in chloroform followed by room temperature consolidation at the high pressure of 2.5,GPa (cold sintering). The composites had an attractive combination of compressive strength and ductility, and their dissolution behavior was similar to that of pure cold sintered ,-TCP. The immersion of ,-TCP,PCL composites in simulated body fluid (SBF) yielded in vitro deposition of a bone-like apatite layer suggesting the ability of these materials to bind to native bone tissue upon implantation. [source]


    Preparation of Titanium Foams by Slip Casting of Particle Stabilized Emulsions,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2009
    Bram Neirinck
    Bulk titanium foams were prepared by emulsion templating during slip casting. The emulsion template was stabilized using partially hydrophobized titanium particles while the continuous phase consisted of a titanium hydride powder suspension. Sintering was performed in inert atmosphere. The use of titanium hydride resulted in lower sintering temperatures and denser, stronger struts. Both homogeneous foams with high compressive strength and structures with a gradient in pore size were obtained. [source]


    Fly ash concrete subjected to thermal cyclic loads

    FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2010
    M. S. KHAN
    ABSTRACT The present study describes the behaviour of concrete as well as fly ash concrete when subjected to varying number of high temperature heating cycles. A Concrete mix (1:2.37:2.98) with 340 kg/m3 cement and,w/cm,ratio 0.45 was prepared. Cement was replaced by varying percentages (0%, 20%, 40%, 50% and 60%) of fly ash by weight of cement. The concrete was subjected to a constant temperature of 200°C for 7, 14, 21 and 28 heating cycles. One heating cycle corresponds to 8 h heating and subsequent cooling in 24 h. Subsequently the effect of temperature on the properties of the concrete was investigated and compared with that of the properties of unheated concrete. The compressive strength of plain as well as fly ash concrete increased when it was subjected to thermal cyclic loads. Moreover, the compressive strength increased with an increase in number of heating cycles. Thermal conductivity of concrete was found to decrease with an increase in the fly ash content. [source]


    AN EVALUATION OF SURFACE HARDNESS OF NATURAL AND MODIFIED ROCKS USING SCHMIDT HAMMER: STUDY FROM NORTHWESTERN HIMALAYA, INDIA

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2009
    VIKRAM GUPTA
    ABSTRACT. Four rock types (quartz mica gneiss, schist, quartzite and calc-silicate) located in the Satluj and Alaknanda valleys were used to test whether a Schmidt hammer can be used to distinguish rock surfaces affected by various natural and man-induced processes like manual smoothing of rock surfaces by grindstone, surface weathering, deep weathering, fluvial polishing and blasting during road construction. Surfaces polished by fluvial process yielded the highest Schmidt hammer rebound (R-) values and the blast-affected surfaces yielded the lowest R-values for the same rock type. Variations in R-value also reflect the degree of weathering of the rock surfaces. It has been further observed that, for all the rock types, the strength of relationship between R-values for the treated surfaces (manual smoothing of rock surface by grindstone) and the unconfined compressive strength (UCS) is higher than for the fresh natural surfaces. [source]


    Big diameter tunnelling beneath low rock cover.

    GEOMECHANICS AND TUNNELLING, Issue 3 2009
    Bau eines Großtunnels unter geringer Felsüberdeckung
    Abstract The Clem Jones Tunnel (former North-South Bypass Tunnel) is the first project to get underway as part of Brisbane's transport plan which aims to improve the urban road network. The total length to be excavated is 6.8 km which includes 4.8 km of driven tunnel and associated road connections. Construction commenced in August 2006 with project completion targeted well before the contractual completion date of October 2010. Due to the local geology, in particular the hard Brisbane tuff and Neranleigh-Fernvale formation a combination of tunnel excavation methods are used. The majority of the tunnel is excavated by two tunnel boring machines in rock having a compressive strength of between 80 and 150 MPa. Ten roadheaders are excavating the remaining tunnels such as ramps, access tunnels, cross passages and merges. A major challenge arose during the planning of the initial mainline excavation underneath the Royal National Association Showground in Bowen Hills. This section contains low rock cover and historical maps indicate that the Showground is located within a former topographic depression (alluvial valley) where a creek once flowed through. Due to traffic merge design requirements, both TBM and roadheader excavation methods were required to be used in this challenging geological profile. The answer was to stabilise the alluvium above both TBM section tunnels from the surface prior to excavation and to operate the TBM in single shield mode with immediate grouting of annular void from the tail shield. In addition, the roadheader section of tunnel required additional support by spiles and canopy tubes installed from the tunnel face. Der Clem Jones Tunnel (ehemals North South Bypass Tunnel) ist das erste in Angriff genommene Projekt des Brisbane-Transportplans. Dieser Plan hat das Ziel, das städtische Straßennetzwerk zu verbessern. Insgesamt wird eine Strecke von 6,8 km aufgefahren, einschließlich 4,8 km bergmännische Tunnel und zugehörige Straßenanbindungen. Die Bauarbeiten begannen im August 2006, und die Fertigstellung des Projekts ist deutlich vor dem vertraglich vereinbarten Fertigstellungstermin im Oktober 2010 geplant. Der größte Teil der Tunnel wird durch zwei Tunnelbohrmaschinen im Hartgestein mit einer Druckfestigkeit zwischen 80 und 150 MPa ausgebrochen. Zehn Teilschnittmaschinen fahren die übrigen Tunnel wie Rampen, Zugangstunnel, Querschläge und Verbindungen auf. Eine große Herausforderung ergab sich während der Planung des Haupttunnelvortriebs unter dem Ausstellungsgelände der Royal National Association in Bowen Hills. Dieses Gebiet besitzt eine geringe Felsüberdeckung, und aus historischen Karten weiß man, dass das Ausstellungsgelände in einer ehemaligen topografischen Senke (alluviales Tal) liegt, durch die früher ein Bach floss. Aufgrund von Verkehrsplanungsanforderungen war es notwendig, sowohl Tunnelbohrmaschinen als auch Teilschnittmaschinen in dieser schwierigen geologischen Situation zu verwenden. Die Lösung bestand darin, das Schwemmland über beiden TBMTunneln von oben her zu stabilisieren und die Tunnelbohrmaschine in der Einfachschildbetriebsart zu fahren, wobei der Ringspalt vom Schildschwanz aus verpresst wird. Die durch Teilschnittmaschinen ausgebrochenen Tunnel mussten außerdem zusätzlich durch Spieße und eine Rohrschirmsicherung gestützt werden. [source]


    The Influence of the Parameter "Temperature" on the Abrasiveness of Rock

    GEOMECHANICS AND TUNNELLING, Issue 1 2008
    Stefan Eberl cand.rer.mont.
    The article deals with the influence of temperature produced in the cutting process on rock abrasiveness and tool wear. Basically it was to clarify which effects take place when quartz or rock with significant quartz content is heated up to a certain temperature. Does the quartz jump from low into high quartz happening at 573 °C cause an increase in abrasiveness of mineral and rock or not? To find out, a certain number of Cerchar abrasiveness index tests were done for a detailed investigation of this topic. Additionally, to get a better understanding what really happens inside rock structure additionally other rock parameters like unconfined compressive strength, Brazilian tensile strength, ultrasonic wave velocity and density were determined on untreated and heated and subsequently cooled down rock samples. The final output of the research work showed that rocks show a very specific and significant reaction to thermal stresses induced into their structure resulting in a different behaviour regarding abrasiveness and fracturing. Einfluss des Parameters "Temperatur" auf die Abrasivität von Fels Der Artikel beschäftigt sich mit dem Einfluss der während des Schneidprozesses entstehenden Temperatur auf die Abrasivität von Gestein und auf den Verschleiß des Schneidwerkzeugs. Es sollte geklärt werden, welche Effekte auftreten, wenn Quarz und Gestein mit erheblichem Quarzgehalt bis zu einer bestimmten Temperatur erhitzt werden. Erzeugt der Quarzsprung, der bei 573 °C stattfindet, von Tiefquarz zu Hochquarz einen Anstieg in der Abrasivität von Mineralen und Gesteinen oder nicht? Um dies herauszufinden, sind eine bestimmte Anzahl von Cerchar Abrasivitätstests durchgeführt worden. Um ein besseres Verständnis zu erhalten, was wirklich in der Struktur des Gesteins passiert, sind weitere Parameter wie einachsiale Druckfestigkeit, Spaltzugfestigkeit, Ultraschallwellengeschwindigkeit und Dichte an unbehandelten und aufgeheizten und wieder abgekühlten Gesteinsproben bestimmt worden. Die Forschungsarbeit hat gezeigt, dass Gesteine eine sehr spezifische und signifikante Reaktion auf thermische Beanspruchungen ihres Gefüges zeigen, was letztlich in einem verschiedenartigen Verhalten hinsichtlich Abrasivität und Bruchverhalten zum Ausdruck kommt. [source]


    Probabilistic analysis of underground pillar stability

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2002
    D. V. Griffiths
    The majority of geotechnical analyses are deterministic, in that the inherent variability of the materials is not modelled directly, rather some ,factor of safety' is applied to results computed using ,average' properties. In the present study, the influence of spatially varying strength is assessed via numerical experiments involving the compressive strength and stability of pillars typically used in underground construction and mining operations. The model combines random field theory with an elasto-plastic finite element algorithm in a Monte-Carlo framework. It is found that the average strength of the rock is not a good indicator of the overall strength of the pillar. The results of this study enable traditional approaches involving factors of safety to be re-interpreted as a ,probability of failure' in the context of reliability based design. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Analytical simulation of the dynamic compressive strength of a granite using the sliding crack model

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2001
    H. B. Li
    Abstract A sliding crack model is employed to simulate rock strength under dynamic compression. It is assumed that the growth and nucleation of a sliding crack array presented results in the shear fault failure and dominate the mechanical properties of rock material. The pseudo-tractions method is used to calculate the stress intensity factor of the sliding crack array under compression. With the utilization of a dynamic crack growth criterion, the growth of the sliding crack array is studied and the simulated strengths of a granite under dynamic compression are correspondingly obtained. It is concluded that the simulated rock strengths increase with increasing strain rates at different confining pressures, and the rising rates have a trend to decrease with increasing confining pressures. It is also indicated that the simulated rock strengths increase with increment of confining pressure at different strain rates, and the rising rates are almost identical at different strain rates. The simulation results are validated by the experimental data for the granite. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Bone-like Resorbable Silk-based Scaffolds for Load-bearing Osteoregenerative Applications,

    ADVANCED MATERIALS, Issue 1 2009
    Andrew M. Collins
    Hydroxyapatite/silk biocompatible composites with unprecedented mechanical strength and toughness areproduced in a new process with theintegrated mineralization of macroporous silk fibroin scaffolds. Thebiomimetic bone-like composites areabsorbable and load-bearing with compressive strength, modulus, andtoughness comparable to the mechanical tolerances of cancellous bone. [source]


    Properties of Porous Si3N4/BN Composites Fabricated by RBSN Technique

    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 4 2010
    Ji-Xuan Liu
    Reaction bonding of silicon nitride (RBSN) technique combined with slip-casting shaping process was used to fabricate porous Si3N4/BN ceramic composites. Si/BN slurry with chemical stability, good dispersibility, and viscosity was prepared using glycerol trioleate (GTO) covering on Si surface and poly(acrylic acid) (PAA) as dispersant. The hydrolysis of Si was strongly prevented by GTO coating. The dispersibility of covered Si and BN suspensions were improved by PAA dispersant. Twenty volume percent covered Si/BN slurries with low viscosity were successfully casted. The cast bodies were dried at room temperature, debindered at 750°C and nitrided below 1450°C. The nitrided samples mainly consist of ,-Si3N4, ,-Si3N4, and h-BN. The composites exhibit homogeneous microstructure consisting of faceted particles, ,-Si3N4 nanowires and a large amount of pores. The porosity is 52.64% and the pore size is in the range of 60,300 nm. The composites show compressive strength of 16.6±1.5 MPa. The dielectric constant of the composite is about 3.1 and the dielectric loss is below 0.5% under different frequencies. [source]


    Stabilization of soft clay in irrigation projects,

    IRRIGATION AND DRAINAGE, Issue 2 2005
    M. M. Mubeen
    stabilisation de chaux; utilisation d'argile molle; déchet de pierre pulvérisée; ouvrage d'irrigation Abstract Clay,lime improvement is an effective means to improve soft clay soil. Lime stabilization especially improves the strength and the workability of the clay soil. In addition, lime improvement provides more resistance to the soil structure and to the effect of weather on the soil structure. This study has investigated lime stabilization of soft clay and the possibility of utilizing waste rock powder produced in crusher plants as a supplemental material for lime stabilization in order to increase the strength of the soil structure. The purpose of the study was to apply the results especially in irrigation projects in order to avoid the problems of soft clay on irrigation structures in Sri Lanka. However, the results and conclusions can be considered for other regions, where the same type of soft clay problems exists. The Dutch Oostvaardersplassen (OVP) soft clay, which has a high plasticity, low shear strength and high natural water content, was chosen for the investigations. The results of unconfined compressive strength for different water contents of clay and also for different lime and waste rock powder contents show an excellent increase in strength and workability. The waste rock powder proved to increase the effect of lime stabilization. The strength improvement caused by waste rock powder is more significant for those soils which have a low clay content. Since in irrigation projects a wide range of clay soils exist, this investigation may be useful to utilize waste rock powder in order to improve the quality and the durability of the foundation of irrigation structures in the long run. Therefore the application of lime and rock material improvement on soft clay in irrigation projects may be a useful approach to stabilize soft soils and improve medium-scale shallow foundation irrigation structures and road and canal embankments, including repairing canal leaks. It has also been found that by applying this method in irrigation projects in Sri Lanka, the stabilization cost for structures on soft clay can be significantly reduced compared to other methods. Copyright © 2005 John Wiley & Sons, Ltd. L'amélioration de l'argile avec de la chaux est une moyenne effective pour améliorer la terre de l'argile molle. Spécialement la stabilisation de chaux améliore la force et la maniabilité de la terre argileuse. De plus l'amélioration de chaux fournit plus de résistance à la structure de la terre avec l'effet du temps sur la structure de la terre pendant les conditions atmosphériques différentes. Dans cette étude on a examiné la stabilisation de chaux dans l'argile molle et la possibilité de utiliser des déchets de pierre pulvérisée, obtenus par pulvériser des usines, comme une matérielle supplémentaire pour la stabilisation de chaux afin que la force de la structure de la terre s'améliore. L'objective de cette étude était d'appliquer les résultats spécialement dans des projets d'irrigation pour éviter des problèmes de l'argile molle dans des structures d'irrigation en Sri Lanka. Les résultats et les conclusions peuvent être considérés pour d'autres régions, ayant le même problème de l'argile molle. Les Oostvaarderplassen (OVP) en Hollande ont de l'argile molle ayant une plasticité haute, une résistance au cisaillement basse et un haut pourcentage de l'eau naturelle. C'est pour ça les Oostvaardersplassen ont été choisis pour accomplir la recherche. Les résultats de la force de pression indéfinie pour des teneurs en eau différents dans l'argile, aussi pour les teneurs en chaux différents et des déchets de pierres pulvérisées montrent une augmentation excellente de la force et de la maniabilité. Les déchets de pierre pulvérisée se révèlent d'augmenter l'effet de la stabilisation de chaux. L'amélioration de la force, causée par les déchets de pierre pulvérisée, est plus significative pour ces terres ayant un teneur d'argile bas. Parce que les projets d'irrigation ont beaucoup de la terre d'argile cette recherche peut être utile pour user des déchets de pierre pulvérisée pour améliorer la qualité et la durabilité de la fondation des structures d'irrigation à long terme. C'est pourquoi l'application du matériel de chaux et de pierre sur de l'argile molle dans des projets d'irrigation peut être une approche utile pour stabiliser des terres molles et peut améliorer des structures de fondations d'irrigation dans des eaux pas profondes, dans des remblais de chemins et de canaux, inclus dans des réparations des fuites de canaux. Aussi on a révélé qu'en appliquant ce méthode dans des projets d'irrigation en Sri Lanka les coûts de la stabilisation des structures sur de l'argile molle peuvent être réduits d'une manière importante comparée avec d'autres méthodes. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Habitual use of the primate forelimb is reflected in the material properties of subchondral bone in the distal radius

    JOURNAL OF ANATOMY, Issue 6 2006
    Kristian J. Carlson
    Abstract Bone mineral density is directly proportional to compressive strength, which affords an opportunity to estimate in vivo joint load history from the subchondral cortical plate of articular surfaces in isolated skeletal elements. Subchondral bone experiencing greater compressive loads should be of relatively greater density than subchondral bone experiencing less compressive loading. Distribution of the densest areas, either concentrated or diffuse, also may be influenced by the extent of habitual compressive loading. We evaluated subchondral bone in the distal radius of several primates whose locomotion could be characterized in one of three general ways (quadrupedal, suspensory or bipedal), each exemplifying a different manner of habitual forelimb loading (i.e. compression, tension or non-weight-bearing, respectively). We employed computed tomography osteoabsorptiometry (CT-OAM) to acquire optical densities from which false-colour maps were constructed. The false-colour maps were used to evaluate patterns in subchondral density (i.e. apparent density). Suspensory apes and bipedal humans had both smaller percentage areas and less well-defined concentrations of regions of high apparent density relative to quadrupedal primates. Quadrupedal primates exhibited a positive allometric effect of articular surface size on high-density area, whereas suspensory primates exhibited an isometric effect and bipedal humans exhibited no significant relationship between the two. A significant difference between groups characterized by predominantly compressive forelimb loading regimes vs. tensile or non-weight-bearing regimes indicates that subchondral apparent density in the distal radial articular surface distinguishes modes of habitually supporting of body mass. [source]


    Microstructure and physical properties of open-cell polyolefin foams

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009
    M. A. Rodriguez-Perez
    Abstract The cellular structure, physical properties, and structure,property relationships of novel open-cell polyolefin foams produced by compression molding and based on blends of an ethylene/vinyl acetate copolymer and a low-density polyethylene have been studied and compared with those of closed-cell polyolefin foams of similar chemical compositions and densities and with those of open-cell polyurethane foams. Properties such as the elastic modulus, collapse stress, energy absorbed in mechanical tests, thermal expansion, dynamic mechanical response, and acoustic absorption have been measured. The experimental results show that the cellular structure of the analyzed materials has interconnected cells due to the presence of large and small holes in the cell walls, and this structure is clearly different from the typical structure of open-cell polyurethane foams. The open-cell polyolefin foams under study, in comparison with closed-cell foams of similar densities and chemical compositions, are good acoustic absorbers; they have a significant loss factor and lower compressive strength and thermal stability. The physical reasons for this macroscopic behavior are analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


    Development, characterization, and validation of porous carbonated hydroxyapatite bone cement

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2009
    Pei-Fu Tang
    Abstract Carbonated hydroxyapatite (CHA) bone cement is capable of self-setting and forming structures similar to mineralized bone. Conventional CHA leaves little room for new bone formation and delays remodeling. The purposes of this study were to develop porous CHA (PCHA) bone cement and to investigate its physicochemical properties, biocompatibility, biodegradation, and in vivo bone repair potential. Vesicants were added to modify CHA, and the solidification time, porosity, and pore size of the PCHA cements were examined. The cytotoxicity and bone repair potential of PCHA were tested in a rabbit bone defect model and assessed by x-ray, histological examination, and mechanical testing. The porosity of the modified PCHA was 36%; 90.23% of the pores were greater than 70 ,m, with a calcium/phosphate ratio of 1.64 and a solidification time of 15 minutes. The PCHA did not affect bone cell growth in vitro, and the degrading time of the PCHA was two and four times faster in vitro and in vivo when compared to CHA. In the bone defect model, the amount of new bone formation in the PCHA-treated group was eight times greater than that of the CHA group; the compressive strength of the PCHA setting was relatively weak in the first weeks but increased significantly at 8 to 16 weeks compared to the CHA group. The PCHA has stable physicochemical properties and excellent biocompatibility; it degrades faster than CHA, provides more porous spaces for new bone ingrowths, and may be a new form of bone cement for the management of bone defects. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2009 [source]


    The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: Acetic acid versus citric acid

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
    Saeed Hesaraki
    Abstract In the present study, macroporous calcium phosphate cements (CPCs) were prepared using a porogen; that is, the gas-foaming technique. The objective was to investigate the influence of the acidic component of the porogen (acetic acid versus citric acid) on several properties of a specified CPC. In all of the cements prepared, the basic component of the porogen was the same, namely, NaHCO3, and it was added to the powder phase of the cement, while the acidic component of the porogen was dissolved in the liquid phase of the cement. The cements were characterized in terms of initial setting time, porosity, crystallinity, injectability and compressive strength. Also, XRD, FTIR, and SEM techniques were employed to evaluate the phase composition, the chemical groups and the morphological aspects of the porous cements during setting. It was found that the presence of a porogen in a CPC led to significant decreases in both its initial setting time and compressive strength. A CPC made using acetic acid contained a larger amount of the apatite phase but was significantly less injectable and less porous than when citric acid was used. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


    Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006
    Xiaoming Li
    Abstract Chitin is a kind of seemly material to match PLLA for a scaffold, which may create an appropriate environment for the regeneration of tissues. In this study, we prepared and evaluated a new nano-hydroxyapatite/collagen/PLLA (nHACP) scaffold reinforced by chitin fibers for bone-tissue engineering. The chitin fibers were crosslinked with PLLA by dicyclohexylcarbodimide (DCC). The chemical characteristics were evaluated by Fourier transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The mechanical strength was measured by compressive tests. The fibers, crosslinked with PLLA, could enhance the compressive strength of the scaffold about four times. Human marrow mesenchymal stem cells (MSCs) culture showed that the reinforced nHACP scaffolds were more cytocompatible than that without reinforcement. The crosslinks hardly affected the cytocompatibility of the reinforced scaffolds. The results suggested that the reinforced scaffolds (DCC crosslinked) might be a promising candidate for bone-tissue engineering. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Graft copolymers of methyl methacrylate and poly([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: Compression testing

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
    Sophie Nguyen
    Abstract Graft copolymers of methyl methacrylate and biodegradable, biocompatible bacterial poly([R]-3-hydroxybutyrate) (PHB) blocks were synthesized and evaluated as possible constituents in acrylic bone cements for use in orthopaedic applications. The copolymers were produced by conventional free radical copolymerization and incorporated in one commercially available acrylic bone cement brand, Antibiotic Simplex® (AKZ). Cements with formulations containing 6.7 and 13.5 wt % of PMMA- graft -PHB were prepared. The morphology of the graft copolymer particles was suggested to influence the ability of the modified cement to be processed. Formulations containing more than about 20 wt % of the graft copolymer resulted in cement doughs that, both after first preparation and several hours later, were either sandy or soft spongy in texture and, thus, would be unacceptable for use in orthopaedic applications. The morphologies of the powders and the volumetric porosity (p) and ultimate compressive strength (UCS) of the cured cements were determined. Micro computed tomography showed that the cements presented average porosities of 13.5,16.9%. It was found that, while the powder particle shape and size for the experimental cements were markedly different from those of AKZ, there was no significant difference in either p or UCS for these cements. The latter was determined to be about 85 MPa for the modified cements and 84 MPa for Antibiotic Simplex. Furthermore, the UCS of all the cements exceeded the minimum level for acrylic bone cements, as stipulated by ASTM F-451. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Influence of powder particle size distribution on complex viscosity and other properties of acrylic bone cement for vertebroplasty and kyphoplasty,

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
    Lidia Hernández
    Abstract For use in vertebroplasty and kyphoplasty, an acrylic bone cement should possess many characteristics, such as high radiopacity, low and constant viscosity during its application, low value of the maximum temperature reached during the polymerization process (Tmax), a setting time (tset) that is neither too low nor too high, and high compressive strength. The objective of this study was to investigate the influence of the powder particle distribution on various properties of one acrylic bone cement; namely, residual monomer content, Tmax, tset, complex viscosity, storage and loss moduli, injectability, and quasi-static compressive strength and modulus. It was found that the formulations that possessed the most suitable complex viscosity-versus-mixing time characteristics are those in which the ratio of the large poly(methyl methacrylate) beads (of mean diameter 118.4 ,m) to the small ones (of mean diameter 69.7 ,m) was at least 90% w/w. For these formulations, the values of the other properties determined were acceptable. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Injectable acrylic bone cements for vertebroplasty with improved properties

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2004
    Raúl García Carrodeguas
    Abstract Currently commercially available acrylic bone cements lack adequate radiopacity and viscosity when they are used in percutaneous vertebroplasty (PVP). In this work improved formulations of radiopaque and injectable poly(methyl methacrylate) bone cements were prepared with different amounts (10,50 wt.%) of BaTiO3 or SrTiO3 particles as the radiopaque agent. Two sets of cements were prepared by using untreated or silanated radiopaque particles, respectively. The influence of the content and nature of the radiopaque agent as well as its silanation with 3-(trimethoxysilyl) propyl methacrylate (,-MPS), on the curing parameters, residual monomer content, radiopacity, mechanical properties, and injectability of the resulting materials, was examined. Doughing and setting times, maximum temperature, and compressive strength of all formulations fulfilled the requirements of standard specifications, with values of peak temperature in the range 57,72 °C and those of compressive strength between 114 and 135 MPa. Formulations containing at least 20 wt.% BaTiO3 or SrTiO3 had radiopacities equal to or greater than that corresponding to 2 mm of Al as required for surgical plastics. Injectability of any of the formulations provided 75,80 wt.% of the total mass manually injected through a conventional biopsy needle 4 min after mixing. Silanation of the BaTiO3 or SrTiO3 particles led to formulations with improved mechanical properties and injectability compared to those obtained with the untreated fillers. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 68B: 94,104, 2004 [source]


    Long-Term Leisure Time Physical Activity and Properties of Bone: A Twin Study,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2009
    Hongqiang Ma
    Abstract Effects of physical activity on bone properties, when controlled for genetic effects, are not fully understood. We aimed to study the association between long-term leisure time physical activity (LTPA) and bone properties using twin pairs known to be discordant for leisure time physical activity for at least 30 yr. Volumetric BMD and geometric properties were measured at the tibia shaft and distal end using pQCT in 16 middle-aged (50,74 yr) same-sex twin pairs (seven monozygotic [MZ] and nine dizygotic [DZ] pairs) selected from a population-based cohort. Paired differences between active and inactive co-twins were studied. Active members of MZ twin pairs had larger cortical bone cross-sectional area (intrapair difference: 8%, p = 0.006), thicker cortex (12%, p = 0.003), and greater moment of inertia (Imax, 20%, p = 0.024) at the tibia shaft than their inactive co-twins. At the distal tibia, trabecular BMD (12%, p = 0.050) and compressive strength index (18%, p = 0.038) were also higher in physically active MZ pair members than their inactive co-twins. The trends were similar, but less consistently so, in DZ pairs as in MZ pairs. Our genetically controlled study design shows that LTPA during adulthood strengthens bones in a site-specific manner, that is, the long bone shaft has a thicker cortex, and thus higher bending strength, whereas the distal bone has higher trabecular density and compressive strength. These results suggest that LTPA has a potential causal role in decreasing the long-term risk of osteoporosis and thus preventing osteoporotic fractures. [source]


    Treatment of Skeletally Mature Ovariectomized Rhesus Monkeys With PTH(1-84) for 16 Months Increases Bone Formation and Density and Improves Trabecular Architecture and Biomechanical Properties at the Lumbar Spine,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2007
    John Fox PhD
    Abstract Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. Introduction: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. Materials and Methods: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 ,g/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. Results: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 ,g/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3,7 months with 10 and 25 ,g/kg and by 16 months with 5 ,g/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 ,g/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. Conclusions: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 ,g/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling. [source]


    Tower Climbing Exercise Started 3 Months After Ovariectomy Recovers Bone Strength of the Femur and Lumbar Vertebrae in Aged Osteopenic Rats,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003
    Takuya Notomi
    Abstract To determine both the preventive and recovery effects of tower climbing exercise on mass, strength, and local turnover of bone in ovariectomized (OVX) rats, we carried out two experiments. In experiment I, 60 Sprague-Dawley rats, 12 months of age, were assigned to four groups: a Baseline Control, Sham-Operated Sedentary, OVX-Sedentary and OVX-Exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 3 months, OVX elevated both the femoral cortex and lumbar trabecular turnover, leading to a reduction in bone mass and strength. However, in OVX-Exercise rats, those values were maintained at the same level as in the Sham-Sedentary rats. Thus, the climbing exercise, started after 3 days of OVX, prevented OVX-induced cortical and trabecular bone loss by depressing turnover elevation. After confirming the preventive effect, we evaluated the recovery effect of exercise. In experiment II, 90 Sprague-Dawley rats, 12 months of age, were assigned to six groups: a Baseline control, two groups of Sham-Operated Sedentary and OVX-Sedentary, and OVX-Exercise rats. The exercise started 3 months after the OVX operation. At 3 months, OVX increased the trabecular bone formation rate and osteoclast surface, leading to a decrease in compressive strength. In the midfemur, the cross-sectional area, moment of inertia, and bending load values decreased. At 6 months, in the OVX-Exercise rats, the parameters of breaking load in both the lumbar and midfemur, lumbar bone mass, and the total cross-sectional area recovered to the same levels as those in the Sham-Sedentary rats. However, the cortical bone area did not recover. Periosteal bone formation increased, while endosteal bone formation decreased. These results showed that the climbing exercise had both a preventive and recovery effect on bone strength in OVX rats. In the mid-femur, effects on bone formation were site-specific, and the cross-sectional morphology was improved without an increase in cortical bone area, supporting cortical drift by mechanical stimulation. [source]


    Use of recycled copper slag for blended cements

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2008
    M Isabel Sánchez de Rojas
    Abstract Copper slag is a by-product generated during smelting to extract copper metal from the ore. The copper slag obtained may exhibit pozzolanic activity and may therefore be used in the manufacture of addition-containing cements. In this paper the effect of the incorporation of the copper slag in cement is measured. Blends of copper slag with Portland cement generally possess properties equivalent to Portland cement containing fly ash, but very different to the silica fume incorporation. Copper slag and fly ash reduce the heat of hydration more effectively than silica fume in mortars. The replacement of 30% cement by copper slag reduces the flexural and compressive strength in a similar way to fly ash; however, after 28 days, the reduction is less than the percentage of substitution. Hydrated calcium aluminate phases were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The pozzolanic activity of copper slag is similar to that of fly ash and higher than silica fume. In the presence of low water/cement ratios, certain pozzolanic materials produce a very compact cement paste that limits the space available for hydration products, a determining factor in the formation of hydrated calcium aluminates. SEM was found to be a useful analytical technique when aluminates are formed and can be clearly detected by XRD. Copyright © 2008 Society of Chemical Industry [source]


    Physical properties and compatibility with dental stones of current alginate impression materials

    JOURNAL OF ORAL REHABILITATION, Issue 11 2004
    H. Murata
    summary, This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material. [source]


    Precooling of the femoral canal enhances shear strength at the cement,prosthesis interface and reduces the polymerization temperature

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 9 2006
    Pang-Hsin Hsieh
    Abstract Preheating of the femoral stem in total hip arthroplasty improves the cement,prosthesis bond by decreasing the interfacial porosity. The main concern, however, is the potential thermal osteonecrosis because of an increased polymerization temperature. In this study, the effects of femoral canal precooling on the characteristics of the cement,stem interface were evaluated in an experimental model for three test conditions: precooling of the femoral canal, preheating of the stem (44°C), and a control in which stems were inserted at room temperature without thermal manipulation of the implant, cement, or bone. Compared to the control group, precooling of the femoral canal and preheating of the stem had similar effects on the cement,stem interface, with greater interfacial shear strength and a reduced porosity. Femoral canal precooling also produced a lower temperature at the cement,bone interface. No difference was found in the ultimate compressive strength of bone cement for the three preparation conditions. Based on this laboratory model, precooling of the femoral canal could improve shear strength and porosity at the stem,cement interface, minimize thermal injury, and maintain the mechanical strength of the cement. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


    Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2003
    Chisa Hidaka
    Background: Cartilage has a limited capacity to heal. Although chondrocyte transplantation is a useful therapeutic strategy, the repair process can be lengthy. Previously we have shown that over expression of bone morphogenetic protein-7 (BMP-7) in chondrocytes by adenovirus-mediated gene transfer leads to increased matrix synthesis and cartilage-like tissue formation in vitro. In this context we hypothesized that implantation of genetically modified chondrocytes expressing BMP-7 would accelerate the formation of hyaline-like repair tissue in an equine model of cartilage defect repair. Methods: Chondrocytes treated with adenovirus vector encoding BMP-7 (AdBMP-7) or as control, an adenovirus vector encoding an irrelevant gene (Escherichia coli cytosine deaminase, AdCD) were implanted into extensive (15 mm diameter) articular cartilage defects in the patellofemoral joints of 10 horses. Biopsies were performed to evaluate early healing at 4 weeks. At the terminal time point of 8 months, repairs were assessed for morphology, MRI appearance, compressive strength, biochemical composition and persistence of implanted cells. Results: Four weeks after surgery AdBMP-7-treated repairs showed an increased level of BMP-7 expression and accelerated healing, with markedly more hyaline-like morphology than control. Quantitative real-time polymerase chain reaction (PCR) analysis of the repair tissue 8 months after surgery showed that few implanted cells persisted. By this time, the controls had healed similarly to the AdBMP-7-treated defects, and no difference was detected in the morphologic, biochemical or biomechanical properties of the repair tissues from the two treatment groups. Conclusions: Implantation of genetically modified chondrocytes expressing BMP-7 accelerates the appearance of hyaline-like repair tissue in experimental cartilage defects. Clinical relevance: Rehabilitation after cell-based cartilage repair can be prolonged, leading to decreased patient productivity and quality of life. This study shows the feasibility of using genetically modified chondrocytes to accelerate cartilage healing. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]