Home About us Contact | |||
Combination Techniques (combination + techniques)
Selected AbstractsTechniques to measure the dry aeolian deposition of dust in arid and semi-arid landscapes: a comparative study in West NigerEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2008Dirk Goossens Abstract Seven techniques designed to measure the dry aeolian deposition of dust on a desert surface were tested during field experiments in Niger, central-west Africa. Deposition fluxes were measured during eight periods of 3,4 days each. Experimental techniques tested were the MDCO (marble dust collector) method, the Frisbee method, the glass plate method (optical analysis of dust deposited on glass surfaces using particle imaging software), the soil surface method (deposition on a simulated desert floor) and the CAPYR (capteur pyramidal) method. Theoretical techniques tested were the inferential method and the combination method (gradient method extended with a deposition term for coarse dust particles). The results obtained by the MDCO, Frisbee, inferential and combination methods could be directly compared by converting the data to identical standard conditions (deposition on a water surface producing no resuspension). The results obtained by the other methods (glass plate, soil surface, CAPYR) were compared relatively. The study shows that the crude (unconverted) deposition fluxes of the five experimental techniques were similar, while the crude deposition fluxes calculated by the two theoretical techniques were substantially higher, of the order of four to five times as high as for the experimental techniques. Recalculation of the data to identical environmental conditions (the standard water surface) resulted in nearly identical deposition fluxes for the MDCO, Frisbee, inferential and combination techniques, although the latter two still had slightly higher values (but the differences remained small). The measurements illustrate the need to include a grain shape factor in theoretical dust deposition models. Without such a factor, theoretical models overestimate the deposition. The paper also discusses the advantages and disadvantages of the techniques tested. Copyright © 2007 John Wiley & Sons, Ltd. [source] Combination of Super Chilling and High Carbon Dioxide Concentration Techniques Most Effectively to Preserve Freshness of Shell Eggs during Long-Term StorageJOURNAL OF FOOD SCIENCE, Issue 1 2010T. Yanagisawa ABSTRACT:, This study was made to examine the combined effects of stored temperature and carbon dioxide atmosphere on shell egg quality. The shell eggs were packed into polyethylene terephthalate/polyethylene (PET/PE) pouches and stored at 0 °C (super chilling), 10 °C, and 20 °C, respectively for 90 d. The atmospheric carbon dioxide concentration was controlled to obtain the 3 concentration levels of high (about 2.0%), medium (about 0.5%), and low (below 0.01%). Changes in Haugh unit (HU) values, weakening of vitelline membranes, and generation of volatiles were analyzed to evaluate the freshness of shell eggs. Results showed that, compared with the other combinations, the technique of super chilling and high carbon dioxide concentration enabled shell eggs to be most effectively stored for 90 d, based on estimations of the statistical significances of differences in HU values, and on maintaining the initial HU values during storage. In addition, the storage of shell eggs using this combination technique was found to significantly prevent the weakening of the vitelline membrane based on the estimations of numbers of eggs without vitelline membrane breakage when eggs broke, and significantly lowered the incidence of hexanal in the yolk from exposure to the gas chromatographic-mass spectrometric analyses of volatiles. Thus, these results confirmed that the combination of super chilling and high carbon dioxide concentration was the most effective technique for preserving shell eggs during a long term of 90 d compared with other combination techniques. [source] A Streamflow Forecasting Framework using Multiple Climate and Hydrological Models,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2009Paul J. Block Abstract:, Water resources planning and management efficacy is subject to capturing inherent uncertainties stemming from climatic and hydrological inputs and models. Streamflow forecasts, critical in reservoir operation and water allocation decision making, fundamentally contain uncertainties arising from assumed initial conditions, model structure, and modeled processes. Accounting for these propagating uncertainties remains a formidable challenge. Recent enhancements in climate forecasting skill and hydrological modeling serve as an impetus for further pursuing models and model combinations capable of delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The framework presented here proposes integration and offline coupling of global climate models (GCMs), multiple regional climate models, and numerous water balance models to improve streamflow forecasting through generation of ensemble forecasts. For demonstration purposes, the framework is imposed on the Jaguaribe basin in northeastern Brazil for a hindcast of 1974-1996 monthly streamflow. The ECHAM 4.5 and the NCEP/MRF9 GCMs and regional models, including dynamical and statistical models, are integrated with the ABCD and Soil Moisture Accounting Procedure water balance models. Precipitation hindcasts from the GCMs are downscaled via the regional models and fed into the water balance models, producing streamflow hindcasts. Multi-model ensemble combination techniques include pooling, linear regression weighting, and a kernel density estimator to evaluate streamflow hindcasts; the latter technique exhibits superior skill compared with any single coupled model ensemble hindcast. [source] Tracking control for switched linear systems with time-delay: a state-dependent switching method,ASIAN JOURNAL OF CONTROL, Issue 5 2009Qing-Kui Li Abstract Tracking control for switched linear systems with time-delay is investigated in this paper. Based on the state-dependent switching method, sufficient conditions for the solvability of the tracking control problem are given. We use single Lyapunov function technique and a typical hysteresis switching law to design a tracking control law such that the H, model reference tracking performance is satisfied. The controller design problem can be solved efficiently by using linear matrices inequalities. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. It is highly desirable that a non-switched time-delay system can not earn such property. Simulation example shows the feasibility and validity of the switching control law. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] |