Home About us Contact | |||
Colonic Inflammation (colonic + inflammation)
Selected AbstractsProtective effect of curcumin, a Curcuma longa constituent, in early colonic inflammation in rats,DRUG DEVELOPMENT RESEARCH, Issue 6 2009Juan Manuel Sánchez-Calvo Abstract Curcumin, a polyphenol derived from the plant, Curcuma longa, has a variety of pharmacological effects, including chemotherapeutic, anti-inflammatory, antiangiogenic, and antioxidant activities. To gain a better understanding of the effects and mechanisms of action of curcumin on the acute injury caused by intra-colonic administration of acetic acid (AA) in rats, inflammation was assessed by histology and myeloperoxidase activity (MPO; an index of neutrophil infiltration in the mucosa); Th1 and Th2 cytokine production; histological and histochemical analysis of the lesions; nitrite production in colon mucosa; and the expression of iNOS, COX-1 and -2 using Western blotting and inmmunohistochemistry. We also studied the involvement of the p38 MAPK/JNK signalling pathway in the protective effect of curcumin in acute colonic inflammation. Curcumin (50,100,mg/kg/day) reduced the degree of colonic injury, the index of neutrophil infiltration and Th1 cytokine secretion, and increased IL-10 production, reduced colonic levels of nitrites, and reduced COX-2 and iNOS overexpression. A reduction in the activation of p38 and JNK MAPKs was also observed. Thus, we show that the widely used food additive, curcumin reduced the development of AA-induced colitis and alleviated the inflammatory response. Inhibition of MAPK signalling by curcumin could explain the changes on the cytokine Th1/Th2 profile, the reduction of COX-2 and iNOS signaling, as well as the decreased nitrite production in colonic mucosa, suggesting that curcumin may be useful in the treatment of ulcerative colitis. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source] Targeting TGF-,1 by employing a vaccine ameliorates fibrosis in a mouse model of chronic colitisINFLAMMATORY BOWEL DISEASES, Issue 6 2010Yanbing Ma MSc Abstract Background: Intestinal fibrosis and stricture formation are major complications of inflammatory bowel disease (IBD), for which there are currently few effective treatments. We sought to investigate whether targeting transforming growth factor-beta1 (TGF-,1), a key profibrotic mediator, with a peptide-based virus-like particle vaccine would be effective in suppressing intestinal fibrosis by using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced chronic colitis. Methods: The vaccine was prepared by inserting a peptide derived from mouse TGF-,1 into a carrier hepatitis B core antigen using gene recombination methods. Chronic colitis was induced in BALB/c mice by 8 weekly TNBS administrations. Mice were subcutaneously injected with vaccine, carrier, or phosphate-buffered saline (PBS) in 2 separate studies: either before or after acute inflammatory responses commenced. Results: Sera from vaccinated mice exhibited significantly elevated levels of TGF-,1-specific immunoglobulin G (IgG), which inhibited TGF-,1-induced luciferase production in mink lung epithelial cells. In the chronic colitis model, mice receiving vaccine showed improved body weight gain and significantly reduced colonic collagen deposition. Hematoxylin and eosin staining and semiquantitative scoring indicated that vaccination even ameliorated colonic inflammation. Cytokine profile analysis revealed that levels of TGF-,1, interleukin (IL)-17, and IL-23 in vaccinated mouse colon tissues were decreased, and that percentages of IL-17-expressing CD4+ lymphocytes in mesenteric lymph node cells were reduced. Furthermore, Smad3 phosphorylation, a key event in TGF-, signaling, was decreased in colonic tissue in vaccinated mice. Conclusions: This TGF-,1 peptide-based vaccine, which suppressed excessive TGF-,1 bioactivity, may prevent the development of intestinal fibrosis and associated complications, presenting a novel approach in the treatment of IBD. (Inflamm Bowel Dis 2010) [source] Association between blood flow and inflammatory state in a T-cell transfer model of inflammatory bowel disease in miceINFLAMMATORY BOWEL DISEASES, Issue 5 2010Norman R. Harris PhD Abstract Background: Adoptive transfer of naive T-lymphocyte subsets into lymphopenic mice initiates chronic gut inflammation that mimics several aspects of inflammatory bowel disease (IBD). Patients with IBD can have profound alterations in intestinal blood flow, but whether the same is true in the T-cell transfer model has yet to be determined. Methods: In the current study, chronic intestinal inflammation was induced in recombinase-activating gene-1-deficient (RAG,/,) mice by adoptive transfer of CD4+ T-lymphocytes obtained from interleukin-10 deficient (IL-10,/,) mice. Results: Four weeks later, widespread colonic inflammation was observed in the reconstituted recipients, in contrast to 2 control sets of mice injected with a different subset of lymphocytes or with vehicle alone. We observed that the resulting pathology induced in the reconstituted RAG,/, mice was divided distinctly into 2 subsets: 1 with blood flow near normal with very high inflammation scores, and the other with severely attenuated blood flow but with much lower signs of inflammation. Colonic and ileal blood flow rates in the latter subset of CD4+ mice averaged only ,30% compared to the mice with higher inflammation scores. The lower blood flow rates were associated with greatly reduced red blood cell concentrations in the tissue, suggesting a possible loss of vascular density. Conclusions: In this model of chronic intestinal inflammation, mild inflammation was associated with significant decreases in blood flow. Inflamm Bowel Dis 2009 [source] Bifidobacterium animalis causes extensive duodenitis and mild colonic inflammation in monoassociated interleukin-10-deficient miceINFLAMMATORY BOWEL DISEASES, Issue 7 2009James P. Moran PhD Abstract Background: We recently showed that Bifidobacterium animalis is more prevalent within the colons of interleukin (IL)-10-deficient (,/,) mice than in wildtype (WT) animals colonized with the same specific pathogen-free (SPF) fecal contents. Here we tested the ability of this organism to cause T-cell-mediated intestinal inflammation by introducing it into germ-free (GF) IL-10,/, mice. Methods: GF IL-10,/, or WT mice were monoassociated with Bifidobacterium animalis subsp. animalis ATCC (American Type Culture Collection, Manassas, VA) 25527T or with B. infantis ATCC 15697T. Inflammation was measured by blinded histologic scores of the duodenum, cecum, and colon and by spontaneous secretion of IL-12/IL-23 p40 from colonic explants. Bacterial antigen-specific CD4+ mesenteric lymph node (MLN) T-cell recall responses were measured in response to antigen-presenting cells (APC) pulsed with bacterial lysates. Results:B. animalis caused marked duodenal inflammation and mild colitis in monoassociated IL-10,/, mice, whereas the intestinal tracts of WT animals remained free of inflammation. B. infantis colonization resulted in mild inflammation in the duodena of IL-10,/, mice. CD4+ MLN T cells from B. animalis monoassociated IL-10,/, mice secreted high levels of IFN-, and IL-17 in response to B. animalis lysate. B. animalis equally colonized the different intestinal regions of WT and IL-10,/, mice. Conclusions:B. animalis, a traditional probiotic species that is expanded in experimental colitis in this model, induces marked duodenal and mild colonic inflammation and TH1/TH17 immune responses when introduced alone into GF IL-10,/, mice. This suggests a potential pathogenic role for this commensal bacterial species in a susceptible host. (Inflamm Bowel Dis 2009) [source] Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune responseINFLAMMATORY BOWEL DISEASES, Issue 9 2005Nicolas Cenac PhD Abstract Background: Activation of colonic proteinase activated receptor-1 (PAR1) provokes colonic inflammation and increases mucosal permeability in mice. The mechanism of inflammation is not neurogenic like in the paw of rats but depends on PAR1 -mediated activation monocytic cells. PAR1 activation in the colon increases the release of lymphocyte T helper-1 (TH1) cytokines. Moreover, PAR1 expression is increased in biopsies from patients with inflammatory bowel disease, and its activation during TH1-mediated colitis in mice increases all of the hallmarks of inflammation. Methods: This study aimed to characterize the effects of PAR1 activation in oxazolone-mediated colitis, involving a TH2 cytokine profile. Results: Intracolonic administration of oxazolone increased myeloperoxidase activity, damage score, and interleukin (IL)-4, IL-10, tumor necrosis factor ,, and IL-1, mRNA expression but lowered interferon-, mRNA expression, indicating colonic inflammation of a TH2 profile. The concurrent intracolonic administration of a PAR1 agonist in oxazolone-treated mice inhibited colitis, resulting in a reduction of myeloperoxidase activity, damage score, and inflammatory cytokine mRNA expression. Using PAR1 -deficient mice, we confirmed that the anti-inflammatory effects of PAR1 agonists were mediated by PAR1. Moreover, in PAR1 -deficient mice or in mice treated with a PAR1 antagonist, oxazolone-induced colitis was exacerbated, showing an endogenous modulatory role for PAR1 in this TH2 cytokine profile of colitis. Conclusions: Thus, as opposed to a previously shown proinflammatory role for PAR1 in a TH1 cytokine-mediated colitis, our new data show anti-inflammatory role for PAR1 activation in the setting of TH2 cytokine colitis model. [source] Dark lumen magnetic resonance enteroclysis in combination with mri colonography for whole bowel assessment in patients with Crohn's disease: First clinical experienceINFLAMMATORY BOWEL DISEASES, Issue 4 2005Andreas G Schreyer MD Abstract Background: Magnetic resonance enteroclysis (MRE) is a recently introduced imaging technique that assesses the small bowel with similar sensitivity and specificity as the fluoroscopically performed conventional enteroclysis. Magnetic resonance imaging colonography (MRC) seems to be a promising technique for polyp assessment in the colon. In this feasibility study, we evaluated the combination of small bowel MRI with unprepared MRC as an integrative diagnostic approach of the whole bowel in patients with Crohn's disease. Methods: Thirty patients with known Crohn's disease were prospectively examined. No particular colonic preparation was applied. Applying the dark lumen technique in all patients, MRE and MRC were performed within 1 session using an integrative examination protocol. T2-weighted and contrast-enhanced T1-weighted sequences were acquired. Inflammation assessment (grades 0 to 2) of the colon was compared with conventional colonoscopy in 29 patient and with surgery in 1 patient. The entire colon was graded fair to good distended in all patients. In 11 of 210 evaluated colonic segments, feces hindered an adequate intraluminal bowel assessment. Twenty-three of 30 patients had complete colonoscopy as the gold standard. In 7 patients, complete colonoscopy could not be performed because of an inflamed stenosis. Results: Correct grading of colonic inflammation was performed with 55.1% sensitivity and 98.2% specificity in all segments. Considering only more extensive inflammation (grade 2), the sensitivity of MRC increased to 70.2% with a specificity of 99.2%. Conclusions: The combination of MRE and MRC could improve the diagnostic value of abdominal MRI evaluation in patients with Crohn's disease. However, MRC can not replace conventional colonoscopy in subtle inflammation assessment. [source] Anti-inflammatory role of interleukin-15 in Crohn's diseaseINFLAMMATORY BOWEL DISEASES, Issue 3 2005Manuel A Silva MD Abstract Background: Interleukin (IL)-15 is overexpressed in intestinal tissue with active Crohn's disease (CD). However, its role in the pathogenesis of the disease remains uncertain. We studied the effects of IL-15 on colonic mucosal proinflammatory cytokine response in vitro using organ culture of human colonic explants. Methods: Colonic tissue was obtained from (1) resections in pediatric CD patients (inflamed and noninflamed) and (2) rectal biopsies in patients with CD undergoing colonoscopy (n = 31) and controls (n = 9). In preliminary experiments, explants from the resections were cultured in the presence or absence of a simulated TH1 stimulation using ionomycin (Io) and phorbol-myristate-acetate (PMA), with or without IL-15, or in medium alone. Rectal biopsies were cultured in the same conditions as above, with or without adding a monoclonal anti-IL-15 neutralizing antibody (mAb). Levels of interferon (IFN)-,, tumor necrosis factor (TNF)-,, and IL-2R, were measured by enzyme-linked immunosorbent assay. Results: IL-15, in the absence of Io + PMA, did not induce the expression of IFN-,, TNF-,, or IL-2R,. Only inflamed explants from resections stimulated with Io + PMA expressed IFN-,, TNF-,, and IL-2R,. This TH1 stimulatory effect was inhibited by IL-15 in a dose-dependent fashion. In rectal biopsy explants, inflamed, noninflamed CD, and control tissue responded to stimulation with Io + PMA (P < 0.05) with increased IFN-, and TNF-, (P < 0.05). This response was again inhibited by IL-15. The inhibitory effect of IL-15 was specifically reversed by anti-IL-15 mAb (P < 0.05). The data for the CD group were also analyzed according to the severity of colonic inflammation and medication use. Conclusions: Our results suggest a possible anti-inflammatory role for IL-15 in CD. We postulate that its overexpression in CD potentially represents a protective mechanism against the exaggerated TH1 immune response. [source] Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient miceINFLAMMATORY BOWEL DISEASES, Issue 2 2002Michael Schultz Abstract Interleukin (IL)-10-deficient (IL-10,/,) mice develop colitis under specific pathogen-free (SPF) conditions and remain disease free if kept sterile (germ free [GF]). We used four different protocols that varied the time-points of oral administration of Lactobacillus plantarum 299v (L. plantarum) relative to colonization with SPF bacteria to determine whether L. plantarum could prevent and treat colitis induced by SPF bacteria in IL-10,/, mice and evaluated the effect of this probiotic organism on mucosal immune activation. Assessment of colitis included blinded histologic scores, measurements of secreted colonic immunoglobulin isotypes, IL-12 (p40 subunit), and interferon (IFN)-, production by anti-CD3-stimulated mesenteric lymph node cells. Treating SPF IL-10,/, mice with L. plantarum attenuated previously established colonic inflammation as manifested by decreased mucosal IL-12, IFN-,, and immunoglobulin G2a levels. Colonizing GF animals with L. plantarum and SPF flora simultaneously had no protective effects. Gnotobiotic IL-10,/, mice monoassociated with L. plantarum exhibited mild immune system activation but no colitis. Pretreatment of GF mice by colonization with L. plantarum, then exposure to SPF flora and continued probiotic therapy significantly decreased histologic colitis scores. These results demonstrate that L. plantarum can attenuate immune-mediated colitis and suggest a potential therapeutic role for this agent in clinical inflammatory bowel diseases. [source] Predominant T helper type 2-inflammatory responses promote murine colon cancersINTERNATIONAL JOURNAL OF CANCER, Issue 9 2006Emi Osawa Abstract Colon cancer is one of the most serious complications of inflammatory bowel diseases, especially ulcerative colitis (UC). Previous studies have shown that characteristic immunological event during inflammation in UC is the expression of T helper-type 2 (Th2) cell-derived cytokines. In this study, we investigated the influence of a predominant Th2-type cytokine response in colitis on carcinogen-induced colon tumors. Wild type (WT), interferon gamma (IFN-,) gene deficient (,/,) [Th2 dominant] or interleukin (IL)-4,/, [Th1-dominant] mice of BALB/c background were used in this study. To compare tumor formation, mice were given the carcinogen azoxymethane (AOM) and intrarectal administration of trinitrobenzene sulfonic acid (TNBS), to induce colitis. Thirty-three weeks after initial treatment, the total colon was examined. When IFN-,,/, mice were treated with AOM and TNBS, significantly higher number of tumors were seen (8.4 ± 1.7) than in WT (3.3 ± 2.9) or IL-4,/, (3.1 ± 3.4) mice, which received identical treatments. A separate set of experiment, using less doses of AOM and TNBS also showed the higher frequency of tumor formation in IFN-,,/, mice than in IL-4,/, mice. Histologically, the tumors were well- or moderately-differentiated adenocarcinomas. No invasion into the submucosal or serosal layers of the intestine was seen. In immunohistological staining, some tumors in IFN-,,/, mice showed distinct nuclear expression of ,-catenin, in contrast to the strong membrane staining seen in tumors of IL-4,/, mice. In conclusion, colonic inflammation associated with Th2-donimant cytokine responses enhanced the formation of malignant neoplasms. © 2005 Wiley-Liss, Inc. [source] The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the ratJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2009Sevgin Ozlem Iseri Abstract Background and Aim:, Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Methods:, Colitis was induced by intrarectal administration of 1 mL of 5% acetic acid to Sprague-Dawley rats (200,250 g; n = 7,8/group). Control rats received an equal volume of saline intrarectally. In treatment groups, the rats were treated with either sildenafil citrate (5 mg/kg/day; subcutaneously) or saline for 3 days. After decapitation, distal colon was weighed and scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and oxidant production. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-, and interleukin (IL)-1, levels. Results:, In the colitis group, the colonic tissue was characterized by lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and oxidant production. Serum TNF-, and IL-1, levels were higher in the colitis group compared to control values. Sildenafil reversed these inflammatory parameters nearly back to control values. Conclusions:, Sildenafil citrate administration to rats with acetic acid-induced colitis seems to be beneficial via prevention of lipid peroxidation, oxidant generation, cytokine production and neutrophil accumulation. [source] Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitisALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 12 2001J. Carrier Background: Iron supplementation may increase disease activity in ulcerative colitis, possibly through the production of reactive oxygen species from the Fenton reaction. Aim: To assess the effects of two doses of oral iron on intestinal inflammation and oxidative stress in experimental colitis. Methods: Colitis was induced in rats by giving 5% dextran sulphate sodium in drinking water for 7 days. First, using a 2 × 2 factorial design, rats with or without dextran sulphate sodium received the regular diet or a diet containing iron 3%/kg diet. Second, rats with dextran sulphate sodium-induced colitis were supplemented with iron 0.3%/kg diet and compared with rats on dextran sulphate sodium and regular diet. The body weight change, histological scores, colon length, rectal bleeding, plasma and colonic lipid peroxides, colonic glutathione peroxidase and plasma vitamin E and C were measured. Faecal analysis for haem and total, free and ethylenediaminetetra-acetic acid-chelatable iron was also performed. Results: Iron 3% and iron 0.3% increased the activity of dextran sulphate sodium-induced colitis, as demonstrated by higher histological scores, heavier rectal bleeding and further shortening of the colon. This was associated with increased lipid peroxidation and decreased antioxidant vitamins. Faecal iron available to the Fenton reaction was increased in a dose-dependent manner. Conclusions: Iron supplementation taken orally enhanced the activity of dextran sulphate sodium-induced colitis and is associated with an increase in oxidative stress. [source] Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in ratsNEUROGASTROENTEROLOGY & MOTILITY, Issue 10 2006M. Sanson Abstract, Activation of cannabinoid CB1 and CB2 receptors is known to attenuate nociception and hyperalgesia in somatic inflammatory conditions. The aim of this study was to determine whether cannabinoids modulate colonic sensitivity in basal and inflammatory conditions. The effects of CB1 and CB2 receptor agonists and antagonists on the abdominal contractile response to colorectal distension (CRD) in basal conditions and after 2,4,6-trinitrobenzenesulphonic acid-induced colitis were investigated. As previously described, colitis triggered a hypersensitivity to CRD. In basal conditions, both CB1 (WIN 55212-2) and CB2 (JWH 015) agonists reduced the abdominal response to CRD at a dose of 1 mg kg,1, i.p. Both compounds were active at a lower dose (0.1 mg kg,1) abolishing the hypersensitivity induced by colitis. Administered alone, CB1 (Rimonabant) and CB2 (SR 144528) receptor antagonists (10 mg kg,1) had no effect on basal sensitivity. In contrast, the CB1, but not the CB2, receptor antagonist enhanced colitis-induced hyperalgesia. It is concluded that colonic inflammation enhances the antinociceptive action of CB1 and CB2 receptor agonists, and activates an endogenous, CB1 receptor mediated, antinociceptive pathway. [source] The HIV protease inhibitor ritonavir synergizes with butyrate for induction of apoptotic cell death and mediates expression of heme oxygenase-1 in DLD-1 colon carcinoma cellsBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2004Heiko Mühl The protease inhibitor ritonavir is an integral part of current antiretroviral therapy targeting human immunodeficiency virus. Recent studies demonstrate that ritonavir induces apoptotic cell death with high efficiency in lymphoblastoid cell lines. Moreover, ritonavir can suppress activation of the transcription factor nuclear factor- ,B and is an inhibitor of interleukin-1, and tumor necrosis factor- , production in peripheral blood mononuclear cells. Thus, ritonavir appears to have anti-inflammatory properties. In the present study, we investigated in DLD-1 colon carcinoma cell effects of ritonavir on apoptotic cell death and expression of heme oxygenase-1 (HO-1), an anti-inflammatory enzyme that may be critically involved in the modulation of colonic inflammation. Compared to unstimulated control, ritonavir resulted in a moderate increase in the rate of apoptotic cell death as observed after 20 h of incubation. Notably, ritonavir potently synergized with the short-chain fatty acid butyrate for induction of caspase-3-dependent apoptosis in DLD-1 cells. Ritonavir enhanced mRNA and protein expression of HO-1 in DLD-1 cells. Ritonavir-induced HO-1 protein was suppressed by SB203580 or SB202190 and preceded by immediate upregulation of cellular c-Fos and c-Jun protein levels. This process was associated with induction of activator protein-1 as detected by electrophoretic mobility shift analysis. The present data suggest that ritonavir has the potential to curb colon carcinogenesis by reducing cell growth via mechanisms that include apoptosis and by simultaneously modulating colonic inflammation via induction of anti-inflammatory HO-1. British Journal of Pharmacology (2004) 143, 890,898. doi:10.1038/sj.bjp.0706023 [source] Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel diseaseCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2004O. LUDWICZEK SUMMARY Interleukin (IL)-1 is a key mediator in the pathogenesis of inflammatory bowel disease (IBD). Naturally occurring IL-1 modulators include IL-1 receptor antagonist (IL-1Ra), IL-1 soluble receptor Type I (IL-1sRI), IL-1sRII and IL-1 receptor accessory protein (AcP). Systemic and mucosal levels of IL-1 soluble receptors remain unknown in IBD. Plasma or colonic tissues were obtained from 185 consecutive unselected patients with Crohn's disease (CD) or ulcerative colitis (UC) and from 52 control subjects. Plasma and colonic explant culture supernatants were assessed for IL-1,, IL-1,, IL-1Ra, IL-1sRI and IL-1sRII. Plasma IL-1Ra levels were higher in UC (+93%) than in healthy subjects. IL-1, and IL-1, were not detected. IL-1sRII levels were marginally lower in CD (,10%) and UC (,9%), whereas IL-1sRI levels were elevated in CD (+28%) only. Plasma IL-1sRI levels correlated positively (P < 0·01) with Crohn's disease activity index (r = 0·53), C-reactive protein (r = 0·46) and ,1-acid glycoprotein (r = 0·42). In colonic explant cultures, IL-1, and IL-1Ra levels were elevated in non-lesional (+233% and +185% respectively) and lesional CD (+353% and +1069%), lesional UC (+604% and +1138%), but not in non-lesional UC. IL-1, was elevated in lesional UC (+152%) and CD (+128%). In contrast, IL-1sRII levels were elevated in non-lesional CD (+65%), but remained unchanged in lesional CD, non-lesional and lesional UC. IL-1sRI levels did not differ between patient and control groups. These results indicate that (i) the proinflammatory moiety IL-1sRI is a systemic marker of inflammation and activity in CD and (ii) local shedding of the functional antagonist IL-1sRII may dampen colonic inflammation in CD, but not in UC. [source] |