Colobine Monkeys (colobine + monkey)

Distribution by Scientific Domains


Selected Abstracts


Examining the extinction risk of specialized folivores: a comparative study of Colobine monkeys

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 9 2008
Jason M. Kamilar
Abstract Species extinctions are nonrandom with some taxa appearing to possess traits that increase their extinction risk. In this study, eight predictors of extinction risk were used as independent variables to predict the IUCN category of a subfamily of specialized folivorous primates, the Colobinae. All data were transformed into phylogenetically independent contrasts and were analyzed using bivariate regressions, multiple regression, and a maximum likelihood approach using Akaike's Information Criterion to assess model performance. Once an outlier was removed from the data set, species that devote a smaller proportion of their diet to mature leaf consumption appear to be at a greater risk of extinction. Also, as female body mass increases, so does extinction risk. In contrast, as maximum latitude and the number of habitat types increase, extinction risk appears to decrease. These findings emphasize the importance of examining detailed dietary variation for predicting extinction risk at a relatively fine taxonomic scale and, consequently, may help improve conservation management. Am. J. Primatol. 70:816,827, 2008. 2008 Wiley-Liss, Inc. [source]


Craniodental mechanics and diet in Asian colobines: Morphological evidence of mature seed predation and sclerocarpy

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Daisuke B. Koyabu
Abstract Folivory has been accepted as the general dietary pattern for colobines. However, recent ecological studies have revealed that extensive seed eating is found in some colobine species. The ripeness of foraged seeds is also reported to differ between seed eaters. As seeds are generally stress-limited and may pose greater mechanical demands, seed-eating species are predicted to exhibit morphological features adaptive for seed predation. In addition, species that feeds on seeds from unripe fruits with hard pericarp is predicted to exhibit increased leverage for anterior dentition. To test these hypotheses, we compared the craniodental morphology of seed-eating Asian colobines (Presbytis rubicunda and Trachypithecus phayrei) with those of species that rarely exploit seeds (Presbytis comata, Trachypithecus obscurus, and Semnopithecus vetulus). The results show that the seed-eating colobines possess a masticatory system with enhanced leverage at postcanine bite points. The sclerocarpic forager P. rubicunda also exhibits markedly greater masticatory leverage at anterior dental bite points, while the mature-seed-eating T. phayrei shows no such advantage for canine and incisor use. These observations suggest that P. rubicunda is well adapted to husking the resistant pericarps of unripe fruits, using the anterior dentition and to gain access to the immature seeds, whereas such sclerocarpic feeding behavior may be less important for T. phayrei. Our findings indicate that the distinctive craniodental variations of colobines may be linked to mature and/or immature seed eating and suggest the significance of seed predation for the evolution of colobine monkeys. Am J Phys Anthropol, 2010. 2010 Wiley-Liss, Inc. [source]


Masticatory stress and the mechanics of "wishboning" in colobine jaws

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
David J. Daegling
Abstract Cercopithecoid monkeys experience relatively high strains along the lingual aspect of the mandibular symphysis because of lateral transverse bending of the mandibular corpora ("wishboning") during mastication. Hylander (Am J Phys Anthropol 64 (1984) 1,46; Am Zool 25 (1985) 315,330) demonstrated that the distribution of strains arising from wishboning loads is comprehensible with reference to the mechanics of curved beams. Theory of curved beams suggests that lingual tensile strains are some multiple of labial compressive strains, yet limitations of experimental methods and uncertainty in estimating parameters needed for theoretical calculations have confounded attempts to characterize the magnitude of this disparity of normal strains. We evaluate the theoretical disparity of normal strains in wishboning in comparison to in vitro strains collected under controlled loads for a sample of mandibles representing two colobine species (N = 6). These data suggest that in colobine monkeys, maximum normal lingual strains should be at least twice maximum labial strains. In addition, we reexamine the distribution of symphyseal stress under an assumption of asymmetric bending, a general approach for calculation of stress appropriate for members that lack a plane of symmetry and are bent along an axis that is not coincident with the member's principal axes. Under asymmetric bending in colobine mandibles, the effect of symphyseal inclination on lingual strain is mitigating at the superior transverse torus and exacerbating at the inferior transverse torus. Relative compliance of colobine mandibular bone further supports the hypothesis that the structural and material properties of the colobine mandibular symphysis do not represent a morphological strategy for minimizing masticatory strain. Am J Phys Anthropol, 2009. 2008 Wiley-Liss, Inc. [source]


The feeding ecology and activity budget of proboscis monkeys

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 6 2009
Ikki Matsuda
Abstract A group of proboscis monkeys (Nasalis larvatus) consisting of an alpha-male, six adult females, and several immatures was observed from May 2005,2006. We collected over 1,968,hr of focal data on the adult male and 1,539,hr of focal data on the six females in a forest along the Menanggul River, Sabah, Malaysia. Availability and seasonal changes in plant species consumed by the focal monkeys were determined by vegetation surveys carried out across an area of 2.15,ha along 200,500,m trails in riverine forest. A total of 188 plant species were consumed by the focal monkeys. The activity budget of members of our study group was 76.5% resting, 19.5% feeding, and 3.5% moving. Young leaves (65.9%) and fruits (25.9%) accounted for the majority of feeding time. Over 90% of fruit feeding involved the consumption of unripe fruits and in the majority of case both the fruit flesh and seeds were eaten. Although fruit eating was rare in some months, during other times of the year time fruit feeding exceeded the time devoted to young leaves. We found that monthly fruit availability was positively related to monthly fruit eating and feeding activity, and seasonal fluctuations in dietary diversity were significantly affected by fruit eating. These results suggest that fruit availability and fruit-eating behaviors are key factors that influence the activity budget of proboscis monkeys. Earlier assumptions that colobine monkeys are obligate folivores do not apply well to proboscis monkeys and certain other colobines. Our findings may help contribute to a better understanding of the dietary adaptations and feeding ecology of Asian colobines. Am. J. Primatol. 71:478,492, 2009. 2009 Wiley-Liss, Inc. [source]