Collision Orogen (collision + orogen)

Distribution by Scientific Domains


Selected Abstracts


Archean Basement and a Paleoproterozoic Collision Orogen in the Huoqiu Area at the Southeastern Margin of North China Craton: Evidence from Sensitive High Resolution Ion Micro-Probe U-Pb Zircon Geochronology

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Yusheng WAN
Abstract: This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (, 1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW,SEE direction to the southern margin of the North China Craton. [source]


Zircon U,Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project

JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2007
R.-X. CHEN
Abstract A combined study of zircon morphology, U,Pb ages and Hf isotopes as well as whole-rock major and trace elements was carried out for ultrahigh-pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual-bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21,737.16 m (I) and 929.67,932.86 m (II) respectively. Zircon U,Pb dating for four samples from the two core segments yields two groups of ages at 784 17 and 222 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U,Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ,Hf(t) values of 7.8 3.1 to 6.0 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ,Hf(t) values of ,6.9 1.6 to ,9.1 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid-Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc,continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc,continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma. [source]


Archean Basement and a Paleoproterozoic Collision Orogen in the Huoqiu Area at the Southeastern Margin of North China Craton: Evidence from Sensitive High Resolution Ion Micro-Probe U-Pb Zircon Geochronology

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Yusheng WAN
Abstract: This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (, 1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW,SEE direction to the southern margin of the North China Craton. [source]


The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2005
J.-P. BURG
Abstract Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen-scale viscous heat production of 0.1 to >1 ,W m,3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time-span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation-generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions. [source]