Home About us Contact | |||
Collateral Branches (collateral + branch)
Selected AbstractsEffects of substrate geometry on growth cone behavior and axon branchingDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2006Ginger S. Withers Abstract At the leading edge of a growing axon, the growth cone determines the path the axon takes and also plays a role in the formation of branches, decisions that are regulated by a complex array of chemical signals. Here, we used microfabrication technology to determine whether differences in substrate geometry, independent of changes in substrate chemistry, can modulate growth cone motility and branching, by patterning a polylysine grid of narrow (2 or 5 ,m wide) intersecting lines. The shape of the intersections varied from circular nodes 15 ,m in diameter to simple crossed lines (nodeless intersections). Time-lapse recordings of cultured hippocampal neurons showed that simple variations in substrate geometry changed growth cone shape, and altered the rate of growth and the probability of branching. When crossing onto a node intersection the growth cone paused, often for hours, and microtubules appeared to defasciculate. Once beyond the node, filopodia and lamellipodia persisted at that site, sometimes forming a collateral branch. At nodeless intersections, the growth cone passed through with minimal hesitation, often becoming divided into separate areas of motility that led to the growth of separate branches. When several lines intersected at a common point, growth cones sometimes split into several subdivisions, resulting in the emergence of as many as five branches. Such experiments revealed an intrinsic preference for branches to form at angles less than 90°. These data show that simple changes in the geometry of a chemically homogeneous substrate are detected by the growth cone and can regulate axonal growth and the formation of branches. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 1183,1194, 2006 [source] Development of otolith receptors in Japanese quailDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2010David Huss Abstract This study examined the morphological development of the otolith vestibular receptors in quail. Here, we describe epithelial growth, hair cell density, stereocilia polarization, and afferent nerve innervation during development. The otolith maculae epithelial areas increased exponentially throughout embryonic development reaching asymptotic values near posthatch day P7. Increases in hair cell density were dependent upon macular location; striolar hair cells developed first followed by hair cells in extrastriola regions. Stereocilia polarization was initiated early, with defining reversal zones forming at E8. Less than half of all immature hair cells observed had nonpolarized internal kinocilia with the remaining exhibiting planar polarity. Immunohistochemistry and neural tracing techniques were employed to examine the shape and location of the striolar regions. Initial innervation of the maculae was by small fibers with terminal growth cones at E6, followed by collateral branches with apparent bouton terminals at E8. Calyceal terminal formation began at E10; however, no mature calyces were observed until E12, when all fibers appeared to be dimorphs. Calyx afferents innervating only Type I hair cells did not develop until E14. Finally, the topographic organization of afferent macular innervation in the adult quail utricle was quantified. Calyx and dimorph afferents were primarily confined to the striolar regions, while bouton fibers were located in the extrastriola and Type II band. Calyx fibers were the least complex, followed by dimorph units. Bouton fibers had large innervation fields, with arborous branches and many terminal boutons. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 436,455, 2010 [source] The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2008Weitao Chen Abstract Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Potential Structures That Could Be Confused With a Nonrecurrent Inferior Laryngeal Nerve: An Anatomic Study,THE LARYNGOSCOPE, Issue 1 2008Eva Maranillo MD Abstract Objectives: Study and detailed description of the large connections between the normally recurrent inferior laryngeal nerve (RILN) and the sympathetic trunk (ST) because these may be mistaken for a nonrecurrent inferior laryngeal nerve (NRILN). Study Design: Morphologic study of adult human necks. Methods: The necks of 144 human, adult, embalmed cadavers were examined (68 males, 76 females). They had been partially dissected by Cambridge preclinical medical students and then further dissected by the authors using magnification. The RILN, the ST, and their branches were identified and dissected. A total of 277 RILNs and STs (137 rights, 140 lefts) were observed. Results: A communicating branch (CB) with a similar diameter to the RILN occurred between the ST and the RILN in 48 of the 277 (17.3%) dissections, 24 from the 137 (17.5%) right dissections, and 24 from the 140 (17%) left dissections. In 12 cases, the CB was bilateral. The CB arose from the superior cervical sympathetic ganglion in 3 of the 48 (6.25%) cases, from the middle ganglion in 10 (21%) cases, from the stellate ganglion in 3 (6.25%) cases, and from the ST in 32 (66.6%) cases. One (0.36%) NRILN associated with a right retro-esophageal subclavian artery (arteria lusoria) was found. Conclusions: 1) The CB between the RILN and the ST may have a diameter and course similar to an NRILN and may be confused with it. 2) The occurrence of the CB is greater than the occurrence referred to in previous studies. 3) The occurrence of the CB is similar by side and sex. 4) The CB may arise at different levels from the cervical ST and ganglia and end in the thyroid area. 5) Other neural elements may also be confused with an RILN, such as the cardiac nerves and the collateral branches from an NRILN to the trachea and esophagus. [source] Blood Supply in the Tongue of Nellore Bos indicus (Linnaeus, 1758)ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2009J. R. Ferreira Summary Aspects of the vascularization of the tongue of Nellore Bos indicus (Linnaeus, 1758) were evaluated through the vascular injection technique (with latex-type Neoprene 450, Du Pont do Brasil S.A. and Sulvinil coloring, Glassurit), fixed in formaldehyde at 7% and dissected with magnifying glass. The material was collected at Goiás Carnes Freezer Warehouse in Goiania, Goias. It was found that the deep lingual artery penetrated the lower lateral region of the prominence of the dorsal area of the tongue, advancing rostrally between the hyoid bone and the hypoglossal muscle. In the intravisceral initial third, the artery represents the deep, sinuous continuation branch of the lingual artery, in which path the sublingual artery was stressed in the ventral plan. Then, the artery deepened in the interior of the hypoglossal muscles and genioglossal, supplying dorsal branches (from three to nine) for the lingual torus; from one to five dorsal collateral branches for the lingual cavity; and one or two ventral collateral branches. At the lingual apex, the artery undergoes bifurcation supplying collateral, dorsal and ventral branches with anastomoses between the parallel vessels in the same antimere and between branches of lower caliber hierarchy between opposite antemeres. The large presence of microvessels indicates a significant blood supply to the organ. These results, in comparison with those found in literature, suggest a peculiar vascular pattern for this cattle breed of Indian origin. [source] Systematization, Distribution and Territory of the Middle Cerebral Artery on the Brain Surface in Chinchilla (Chinchilla lanigera)ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2009A. C. P. De Araujo Summary The aim of the present study was to analyse thirty chinchilla (Chinchilla lanigera) brains, injected with latex, and to systematize and describe the distribution and the vascularization territories of the middle cerebral artery. This long vessel, after it has originated from the terminal branch of the basilar artery, formed the following collateral branches: rostral, caudal and striated (perforating) central branches. After crossing the lateral rhinal sulcus, the middle cerebral artery emitted a sequence of rostral and caudal convex hemispheric cortical collateral branches on the convex surface of the cerebral hemisphere to the frontal, parietal, temporal and occipital lobes. Among the rostral convex hemispheric branches, a trunk was observed, which reached the frontal and parietal lobes and, in a few cases, the occipital lobe. The vascular territory of the chinchilla's middle cerebral artery included, in the cerebral hemisphere basis, the lateral cerebral fossa, the caudal third of the olfactory trigone, the rostral two-thirds of the piriform lobe, the lateral olfactory tract, and most of the convex surface of the cerebral hemisphere, except for a strip between the cerebral longitudinal fissure and the vallecula, which extended from the rostral to the caudal poles bordering the cerebral transverse fissure. [source] |