Collagen Structure (collagen + structure)

Distribution by Scientific Domains


Selected Abstracts


Collagen structure: The molecular source of the tendon magic angle effect

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2007
Gary D. Fullerton PhD
Abstract This review of tendon/collagen structure shows that the orientational variation in MRI signals from tendon, which is referred to as the "magic angle" (MA) effect, is caused by irreducible separation of charges on the main chain of the collagen molecule. These charges are held apart in a vacuum by stereotactic restriction of protein folding due in large part to a high concentration of hydroxyproline ring residues in the amino acids of mammalian collagen. The elevated protein electrostatic energy is reduced in water by the large dielectric constant of the highly polar solvent (, , 80). The water molecules serve as dielectric molecules that are bound by an energy that is nearly equivalent to the electrostatic energy between the neighboring positive and negative charge pairs in a vacuum. These highly immobilized water molecules and secondary molecules in the hydrogen-bonded water network are confined to the transverse plane of the tendon. Orientational restriction causes residual dipole coupling, which is directly responsible for the frequency and phase shifts observed in orientational MRI (OMRI) described by the MA effect. Reference to a wide range of biophysical measurements shows that native hydration is a monolayer on collagen hm = 1.6 g/g, which divides into two components consisting of primary hydration on polar surfaces hpp = 0.8 g/g and secondary hydration hs = 0.8 g/g bridging over hydrophobic surface regions. Primary hydration further divides into side-chain hydration hpsc = 0.54 g/g and main-chain hydration hpmc = 0.263 g/g. The main-chain fraction consists of water that bridges between charges on the main chain and is responsible for almost all of the enthalpy of melting ,H = 70 J/g-dry mass. Main-chain water bridges consist of one extremely immobilized Ramachandran water bridge per tripeptide hRa = 0.0658 g/g and one double water bridge per tripeptide hdwb = 0.1974 g/g, with three water molecules that are sufficiently slowed to act as the spin-lattice relaxation sink for the entire tendon. J. Magn. Reson. Imaging 2007. © 2007 Wiley-Liss, Inc. [source]


Collagen dynamics in articular cartilage under osmotic pressure

NMR IN BIOMEDICINE, Issue 8 2006
Göran Zernia
Abstract Cartilage is a complex biological tissue consisting of collagen, proteoglycans and water. The structure and molecular mobility of the collagen component of cartilage were studied by 13C solid-state NMR spectroscopy as a function of hydration. The hydration level of cartilage was adjusted between fully hydrated (,80 wt% H2O) and highly dehydrated (,30 wt% H2O) using the osmotic stress technique. Thus, the conditions of mechanical load could be simulated and the response of the tissue macromolecules to mechanical stress is reported. From the NMR measurements, the following results were obtained. (i) Measurements of motionally averaged dipolar 1H,13C couplings were carried out to study the segmental mobility in cartilage collagen at full hydration. Backbone segments undergo fast motions with amplitudes of ,35° whereas the collagen side-chains are somewhat more mobile with amplitudes between 40 and 50°. In spite of the high water content of cartilage, collagen remains essentially rigid. (ii) No chemical shift changes were observed in 13C cross-polarization magic angle spinning spectra of cartilage tissue at varying hydration indicating that the collagen structure was not altered by application of high osmotic stress. (iii) The 1H,13C dipolar coupling values detected for collagen signals respond to dehydration. The dipolar coupling values gradually increase upon cartilage dehydration, reaching rigid limit values at ,30 wt% H2O. This indicates that collagen is essentially dehydrated in cartilage tissue under very high mechanical load, which provides insights into the elastic properties of cartilage collagen, although the mechanical pressures applied here exceed the physiological limit. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Structural transition during thermal denaturation of collagen in the solution and film states,

CHIRALITY, Issue 1 2009
Ganesh Shanmugam
Abstract Temperature dependent vibrational circular dichroism (VCD) spectra of type I collagen, in solution and film states, have been measured. These spectra obtained for solution sample suggest that the thermal denaturation of collagen results in transition from poly- L -proline II (PPII) to unordered structure. The PPII structure of collagen is identified by the presence of negative VCD couplet in the amide I region, while the formation of unordered structure is indicated by the disappearance of VCD in the amide I region. The temperature dependent spectra obtained for the supported collagen film indicated a biphasic transition, which is believed to be the first vibrational spectroscopic report to support a biphasic transition during thermal denaturation of collagen film. The temperature dependent spectra of collagen films suggest that the thermal stability of collagen structure depends on its state and decreases in the order: supported film > free standing film > solution state. These observations are believed to be significant in the VCD spectroscopic analysis of secondary structures of proteins and peptides. Chirality, 2009. © 2008 Wiley-Liss, Inc. [source]


A statistically derived parameterization for the collagen triple-helix

PROTEIN SCIENCE, Issue 11 2002
Jan K. Rainey
Abstract The triple-helix is a unique secondary structural motif found primarily within the collagens. In collagen, it is a homo- or hetero-tripeptide with a repeating primary sequence of (Gly-X-Y)n, displaying characteristic peptide backbone dihedral angles. Studies of bulk collagen fibrils indicate that the triple-helix must be a highly repetitive secondary structure, with very specific constraints. Primary sequence analysis shows that most collagen molecules are primarily triple-helical; however, no high-resolution structure of any entire protein is yet available. Given the drastic morphological differences in self-assembled collagen structures with subtle changes in assembly conditions, a detailed knowledge of the relative locations of charged and sterically bulky residues in collagen is desirable. Its repetitive primary sequence and highly conserved secondary structure make collagen, and the triple-helix in general, an ideal candidate for a general parameterization for prediction of residue locations and for the use of a helical wheel in the prediction of residue orientation. Herein, a statistical analysis of the currently available high-resolution X-ray crystal structures of model triple-helical peptides is performed to produce an experimentally based parameter set for predicting peptide backbone and C, atom locations for the triple-helix. Unlike existing homology models, this allows easy prediction of an entire triple-helix structure based on all existing high-resolution triple-helix structures, rather than only on a single structure or on idealized parameters. Furthermore, regional differences based on the helical propensity of residues may be readily incorporated. The parameter set is validated in terms of the predicted bond lengths, backbone dihedral angles, and interchain hydrogen bonding. [source]