Collagen Metabolism (collagen + metabolism)

Distribution by Scientific Domains


Selected Abstracts


Effect of parathyroid hormone-related protein on fibroblast proliferation and collagen metabolism in human skin

EXPERIMENTAL DERMATOLOGY, Issue 4 2002
Emanuela Maioli
Abstract: The parathyroid hormone-related protein (PTHrp), structurally similar to the parathyroid hormone (PTH) in its NH2 -terminal part, was first identified as a tumour-derived peptide responsible for a paraneoplastic syndrome known as humoral hypercalcemia of malignancy. The PTHrp gene is expressed not only in cancer but also in normal tissues during adult and/or fetal life, where it plays predominantly paracrine and/or autocrine roles. In the skin PTHrp produced by keratinocytes acts on fibroblasts by complex cooperative circuits involving cytokines and growth factors. In this report, we studied the direct effects of synthetic PTHrp 1,40 on proliferation and collagen synthesis and matrix metalloproteinase-2 (MMP-2) activity in cultures of fibroblasts isolated from normal human skin. Fibroblasts exposure to varying doses of PTHrp for 48 h, significantly and dose-dependently inhibited proliferation evaluated by [3H]-thymidine incorporation into DNA. A dose-dependent stimulation of cAMP released into the medium was concomitantly observed. In contrast, PTHrp had no effect on collagen synthesis evaluated either by [3H]-proline incorporation or by radioimmunoassay (RIA) of the carboxyterminal fragment of type I procollagen (PICP). MMP-2 activity, evaluated by quantitative zymographic analysis, was significantly increased by PTHrp treatment at doses of 160 and 320 nM. These findings indicate that PTHrp may play a role in normal dermal physiology by controlling both fibroblast proliferation and extracellular matrix degradation. [source]


Collagen Metabolism Is Markedly Altered in the Hypertrophic Cartilage of Growth Plates from Rats with Growth Impairment Secondary to Chronic Renal Failure

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2001
Jesús Álvarez
Abstract Skeletal growth depends on growth plate cartilage activity, in which matrix synthesis by chondrocytes is one of the major processes contributing to the final length of a bone. On this basis, the present work was undertaken to ascertain if growth impairment secondary to chronic renal insufficiency is associated with disturbances of the extracellular matrix (ECM) of the growth plate. By combining stereological and in situ hybridization techniques, we examined the expression patterns of types II and X collagens and collagenase-3 in tibial growth plates of rats made uremic by subtotal nephrectomy (NX) in comparison with those of sham-operated rats fed ad libitum (SAL) and sham-operated rats pair-fed with NX (SPF). NX rats were severely uremic, as shown by markedly elevated serum concentrations of urea nitrogen, and growth retarded, as shown by significantly decreased longitudinal bone growth rates. NX rats showed disturbances in the normal pattern of chondrocyte differentiation and in the rates and degree of substitution of hypertrophic cartilage with bone, which resulted in accumulation of cartilage at the hypertrophic zone. These changes were associated with an overall decrease in the expression of types II and X collagens, which was especially marked in the abnormally extended zone of the hypertrophic cartilage. Unlike collagen, the expression of collagenase-3 was not disturbed severely. Electron microscopic analysis proved that changes in gene expression were coupled to alterations in the mineralization as well as in the collagen fibril architecture at the hypertrophic cartilage. Because the composition and structure of the ECM have a critical role in regulating the behavior of the growth plate chondrocytes, results obtained are consistent with the hypothesis that alteration of collagen metabolism in these cells could be a key process underlying growth retardation in uremia. [source]


Inhibition of prolidase activity by nickel causes decreased growth of proline auxotrophic CHO cells,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2005
Wojciech Miltyk
Abstract Occupational exposure to nickel has been epidemiologically linked to increased cancer risk in the respiratory tract. Nickel-induced cell transformation is associated with both genotoxic and epigenetic mechanisms that are poorly understood. Prolidase [E.C.3.4.13.9] is a cytosolic Mn(II)-activated metalloproteinase that specifically hydrolyzes imidodipeptides with C-terminal proline or hydroxyproline and plays an important role in the recycling of proline for protein synthesis and cell growth. Prolidase also provides free proline as substrate for proline oxidase, whose gene is activated by p53 during apoptosis. The inhibition of prolidase activity by nickel has not yet been studied. We first showed that Ni(II) chloride specifically inhibited prolidase activity in CHO-K1 cells in situ. This interpretation was possible because CHO-K1 cells are proline auxotrophs requiring added free proline or proline released from added Gly-Pro by prolidase. In a dose-dependent fashion, Ni(II) inhibited growth on Gly-Pro but did not inhibit growth on proline, thereby showing inhibition of prolidase in situ in the absence of nonspecific toxicity. Studies using cell-free extracts showed that Ni(II) inhibited prolidase activity when present during prolidase activation with Mn(II) or during incubation with Gly-Pro. In kinetic studies, we found that Ni(II) inhibition of prolidase varied with respect to Mn(II) concentration. Analysis of these data suggested that increasing concentrations of Mn(II) stabilized the enzyme protein against Ni(II) inhibition. Because prolidase is an important enzyme in collagen metabolism, inhibition of the enzyme activity by nickel could alter the metabolism of collagen and other matrix proteins, and thereby alter cell,matrix and cell,cell interactions involved in gene expression, genomic stability, cellular differentiation, and cell proliferation. Published 2005 Wiley-Liss, Inc. [source]


Repeated intraarticular injections of triamcinolone acetonide alter cartilage matrix metabolism measured by biomarkers in synovial fluid

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2005
Christophe Céleste
Abstract Although intraarticular (IA) corticosteroids are frequently used to treat joint disease, the effects of their repeated use on articular cartilage remains controversial. The aim of our study was to determine the effects of a clinically recommended dose of IA triamcinolone acetonide (TA), on synovial fluid (SF) biomarkers of cartilage metabolism. Ten adult horses, free of osteoarthritis (OA) in their radiocarpal joints, were studied. One radiocarpal joint of each horse was randomly chosen for treatment and the contralateral anatomically paired joint acted as the control. Aseptic arthrocentesis was performed weekly on both joints for 13 weeks. The initial results from the first 3 weeks of the experimental period established baseline untreated control marker levels for each joint, each being its own control. On weeks 3, 5, and 7, a sterile suspension of 12mg of TA was injected into the treated joint and an equivalent volume of sterile saline solution (0.9%) was injected into the control joint. SF was immunoassayed for biomarkers of aggrecan turnover (CS 846 & KS), types I and II collagen cleavage (C1,2C) and type II collagen synthesis (CPII). In treated joints, there was a significant increase in CS 846, KS, C1,2C and CPII epitope concentrations following IA TA injections when compared to baseline levels. There was also a significant increase in C1,2C and CPII epitope concentrations in the contralateral control joints following IA TA injections in the treated joint. Significant differences were observed between treated and control joints for all markers except CPII. These findings indicate that TA alters articular cartilage and collagen metabolism in treated and, interestingly, also in control joints, suggesting a systemic effect of the drug. Though intuitively the observed findings would favor the hypothesis that long-term IA TA treatment changes joint metabolism and this may have detrimental effects; further studies would be necessary to confirm this. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates collagen phagocytosis by human gingival fibroblasts

MOLECULAR ORAL MICROBIOLOGY, Issue 3 2008
N. Takahashi
Introduction:, Collagen phagocytosis by fibroblasts is involved in the intracellular pathway related to collagen breakdown in soft connective tissues. The possible role of lipopolysaccharide (LPS) in regulating this fibroblast function has not been elucidated so we investigated the effect of LPS from Actinobacillus actinomycetemcomitans, a periodontopathic bacterium, on collagen phagocytic activity in human gingival fibroblasts and associated regulatory mechanisms. Methods:, LPS pretreatment stimulated binding of collagen-coated beads to cells and, subsequently, their internalization. Results:, The LPS-activated collagen phagocytic process was enhanced in the presence of the soluble form of CD14 (sCD14) or LPS-binding protein (LBP), while the LPS/LBP treatment activated Akt and induced actin reorganization. Furthermore, these LPS/LBP-induced effects were partially suppressed by adding phosphatidyl-inositol-3 kinase (PI3K) inhibitors. Conclusion:, These results suggest that A. actinomycetemcomitans LPS disturbs the homeostasis of collagen metabolism within gingival tissue by facilitating collagen phagocytosis by gingival fibroblasts, and serum sCD14 and LBP positively regulate the action of LPS. In addition, the PI3K/Akt signaling is thought to partially mediate the LPS/LBP-stimulated collagen phagocytic pathway, which may be dependent on actin cytoskeletal rearrangement. [source]


Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF- ,in vitro

ORAL DISEASES, Issue 2 2006
T Kato
Objective:, Tumor necrosis factor (TNF)- , is associated with chronic gingival inflammation and reported to induce gingival overgrowth (GO), while phenytoin (PHT) is also known to be a causative agent of GO. We examined the synergistic effect of PHT and TNF- , on collagen metabolism in human gingival fibroblasts (HGFs). Materials and methods:, HGFs were cultured with TNF- , and PHT. Quantitative real-time RT-PCR was employed to determine the mRNA levels for collagen, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and integrin subunits. Cellular collagen endocytosis was determined using a flow-cytometry. Results:, The proliferation of HGFs was not affected by TNF- , or PHT individually, whereas both synergistically increased collagen accumulation in HGFs. Further, collagen mRNA expression was not increased by TNF- , or PHT, although together they markedly prevented cellular collagen endocytosis, associated with the suppression of ,2,1-integrin mRNA expression. The mRNA expression of MMP-1 and-2 was suppressed by PHT, while TIMP-1 mRNA expression was enhanced by both TNF- , and PHT. Conclusion:, Our results suggest that TNF- , and PHT together cause impaired collagen metabolism by suppression of enzymatic degradation with MMPs/TIMP-1 and integrin-mediated endocytosis. These synergistic effects may also be involved in TNF- , - and PHT-induced collagen accumulation, leading to GO. [source]


Novel Aspects of Intrinsic and Extrinsic Aging of Human Skin: Beneficial Effects of Soy Extract,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2005
Kirstin M. Südel
ABSTRACT Biochemical and structural changes of dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal-epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin. [source]