Home About us Contact | |||
Collagen Levels (collagen + level)
Selected AbstractsEffect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytesBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006Yung-Chih Kuo Abstract Chitin and chitosan were hybridized in various weight percentages by genipin crosslinkage under various prefreezing temperatures to form tissue-engineering scaffolds via lyophilization. In addition, deposition of hydroxyapatite (HA) on the surface of the porous scaffolds was performed by precipitation method to achieve modified chemical compositions for chondrocyte attachments and growths. The experimental results revealed that a lower prefreezing temperature or a higher weight percentage of chitin in the chitin-chitosan scaffolds would yield a smaller pore diameter, a greater porosity, a larger specific surface area, a higher Young's modulus, and a lower extensibility. Moreover, a higher chitin percentage could also result in a higher content of amine groups after crosslink and a lower onset temperature for the phase transition after thermal treatment. A decrease in the prefreezing temperature from ,4°C to ,80°C, an increase in the chitin percentage from 20% to 50%, and an increase in the cycle number of alternate immersion for HA deposition from 1 to 5 generated positive effects on the cell number, the content of glycosaminoglycans, and the collagen level over 28-day cultivation of bovine knee chondrocytes. İ 2006 Wiley Periodicals, Inc. [source] Melatonin protects against endosulfan-induced oxidative tissue damage in ratsJOURNAL OF PINEAL RESEARCH, Issue 4 2008Gülden Z. Omurtag Abstract:, Endosulfan is a chlorinated cyclodiene insecticide which induces oxidative stress. In this study, we investigated the possible protective effect of melatonin, an antioxidant agent, against endosulfan (Endo)-induced toxicity in rats. Wistar albino rats (n = 8) were administered endosulfan (22 mg/kg/day orally) followed by either saline (Endo group) or melatonin (10 mg/kg/day, Endo + Mel group) for 5 days. In other rats, saline (control group) or melatonin (10 mg/kg/day, Mel group) was injected for 5 days, following corn oil administration (vehicle of endosulfan). Measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content were performed in liver and kidney. Furthermore, aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine levels, lactate dehydrogenase (LDH) activity were measured in the serum samples, while tumor necrosis factor-, (TNF-,), interleukin-, (IL-,) and total antioxidant capacity (AOC) were assayed in plasma samples. Endosulfan administration caused a significant decrease in tissue GSH and plasma AOC, which was accompanied with significant rises in tissue MDA and collagen levels and MPO activity. Moreover, the proinflammatory mediators (TNF-, and IL-,), LDH activity, AST, ALT, creatinine and BUN levels were significantly elevated in the endosulfan-treated rats. On the other hand, melatonin treatment reversed all these biochemical alterations induced by endosulfan. Our results suggest that oxidative mechanisms play an important role in endosulfan-induced tissue damage and melatonin, by inhibiting neutrophil infiltration, balancing oxidant,antioxidant status and regulating the generation of inflammatory mediators, ameliorates oxidative organ injury as a result of endosulfan toxicity. [source] Melatonin protects against pressure ulcer-induced oxidative injury of the skin and remote organs in ratsJOURNAL OF PINEAL RESEARCH, Issue 3 2006Göksel Abstract:, Pressure ulcers (PU) cause morphological and functional alterations in the skin and visceral organs; the damage is believed to be due to ischemia/reperfusion (I/R) injury. In this study, we examined the role of oxidative damage in PU and the beneficial effect of treatment with the antioxidant melatonin. PU were induced by applying magnets over steel plates that were implanted under the skin of rats; this compressed the skin and caused ischemia. Within a 12-hr period, rats were subjected to five cycles of I/R (2 and 0.5 hr respectively), followed by an additional 12 hr of ischemia (to simulate the period at sleep at night). This protocol was repeated for 3 days. In treatment groups, twice a day during reperfusion periods, melatonin (5 mg per rat) was either applied locally as an ointment on skin, or administered i.p. (10 mg/kg). At the end of the experimental period, blood and tissue (skin, liver, kidney, lung, stomach, and ileum) samples were taken for determination of biochemical parameters and for histological evaluation. Local treatment with melatonin inhibited the increase in malondialdehyde levels; an index of lipid peroxidation, myeloperoxidase activity; an indicator of tissue neutrophil infiltration, and the decrease in glutathione; a key antioxidant, in the skin induced by PU, but was less efficient in preventing the damage in visceral organs. However, systemic treatment prevented the damage in the visceral organs. Significant increases in creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and collagen levels in animals with PU were prevented by melatonin treatment. The light microscopic examination exhibited significant degenerative changes in dermis and epidermis in the PU rats. Tissue injury was decreased especially in the locally treated group. Findings of the present study suggest that local and/or systemic melatonin treatment may prove beneficial in the treatment of PU. [source] Antifibrogenic effects of tamoxifen in a rat model of periportal hepatic fibrosisLIVER INTERNATIONAL, Issue 2 2009Soo Hyung Ryu Abstract Backgrounds/Aims: It has been reported that tamoxifen may affect hepatoma cell growth in vitro by suppressing transforming growth factor ,-1 (TGF-,1) expression, suggesting that tamoxifen might also retard fibrogenesis. Thus, we examined whether tamoxifen might suppress TGF-,1 expression and consequently inhibit the process of hepatic fibrosis in vivo. Methods: To induce periportal hepatic fibrosis, 50 male adult Sprague,Dawley rats were injected with 0.62 mmol/kg of allyl alcohol, intraperitoneally, twice a week for 8 weeks. Hepatic fibrosis scores, intrahepatic collagen levels and plasma TGF-,1 expression levels were evaluated in three groups of 10 rats orally administered tamoxifen at 1, 5 and 10 mg/kg, respectively, and in 20 controls. Messenger RNAs (mRNAs) encoding TGF-,1 and TGF-, receptors in liver tissue were semiquantified using reverse transcriptase polymerase chain reaction. Results: Hepatic fibrosis scores decreased progressively as the dose of tamoxifen increased, resulting in a significant change in rats treated with tamoxifen at 10 mg/kg compared with controls (P=0.018). Intrahepatic collagen content was significantly less in the group treated with tamoxifen at 10 mg/kg compared with the control (P=0.045). Plasma TGF-,1 levels were also significantly lower in rats treated with tamoxifen at 10 mg/kg compared with controls (P=0.007). All three concentrations of tamoxifen tested decreased the expression levels of hepatic TGF-,1 mRNA and type I TGF-, receptor (TGF-, RI) mRNA to similar extents. Conclusions: Tamoxifen seems to inhibit the process of hepatic fibrosis dose-dependently by suppressing the transcription of TGF-,1 and TGF-, RI in an experimental model of periportal hepatic fibrosis. [source] Roxithromycin inhibits transforming growth factor-, production by cultured human mesangial cellsNEPHROLOGY, Issue 6 2006HIDEAKI YAMABE SUMMARY: Background: Transforming growth factor-, (TGF-,) plays an important role in progression of renal injury. However, few materials which inhibit TGF-, have been known. Roxithromycin (ROX), macrolide antibiotics, is known to have anti-inflammatory, immunomodulatory and tissue reparative effects besides its bacteriostatic activity, although the exact mechanism of its anti-inflammatory and immunomodulatory effects was not defined. We examined the effect of ROX on production of TGF-, and type IV collagen by cultured human mesangial cells (HMC). Methods: Human mesangial cells were incubated with several concentrations of ROX and TGF-, and type IV collagen levels in the culture supernatants were measured by enzyme-linked immunoassay. Amount of TGF-, mRNA was also quantified by using a colourimetric mRNA quantification kit and semiquantitative reverse transcriptase polymerase chain reaction. We also examined the effect of ROX on tyrosine kinase, MAP kinase and NF-,B stimulated by thrombin. Results: Roxithromycin (0.1,10.0 µg/mL) inhibited TGF-, production by HMC in a dose- and time-dependent manner without inducing cell injury. ROX (10.0 µg/mL) also inhibited mRNA expression of TGF-, in HMC. Thrombin (5 U/mL) stimulated TGF-, production by HMC and ROX significantly inhibited the stimulating effect of thrombin on TGF-, production. ROX also inhibited the increment of type IV collagen production stimulated by thrombin. ROX (10.0 µg/mL) suppressed the thrombin-induced NF-,B activation, although ROX did not inhibit the activation of tyrosine kinase and MAP kinase by thrombin. Conclusion: Roxithromycin has an inhibitory effect on TGF-, production by HMC possibly via inhibition of NF-,B. ROX may be a potential agent for the treatment of glomerulosclerosis. [source] Effects of Th2 pulmonary inflammation in mice with bleomycin-induced pulmonary fibrosisRESPIROLOGY, Issue 6 2008Hirokuni HIRATA Background and objective: Leucocytes, especially lymphocytes and neutrophils, as well as alveolar macrophages, that infiltrate into the lung are involved in the development of pulmonary fibrosis. However, the role of T helper (Th)2-type inflammation, mediated by Th2 cells and eosinophils, in fibrosis remains unknown. Transgenic mice deficient in the transcriptional repressor, Bcl6, display an attenuation of Th2 cytokine production. We studied the effects of Th2-type pulmonary inflammation on bleomycin-induced pulmonary fibrosis using Bcl6 transgenic mice. Methods: Bleomycin was administered to ovalbumin (OVA)-sensitized Bcl6 transgenic and wild-type mice by intratracheal instillation during sequential OVA antigen challenge. Concentrations of transforming growth factor-,1 in the BAL fluid were measured 2 weeks after bleomycin administration. At the same time lung tissue was examined histopathologically, and homogenized to assess collagen levels and Th1/Th2 cytokine mRNA expression. Results: Although OVA-sensitized, bleomycin-treated Bcl6 transgenic mice had markedly lower numbers of eosinophils in both BAL and lung tissue compared with OVA-sensitized, bleomycin-treated wild-type mice, the development of pulmonary fibrosis in response to bleomycin was similar in Bcl6 transgenic mice and wild-type mice. Conclusion: These results suggest that Th2-dominant inflammation in the lung is not essential for the development of bleomycin-induced pulmonary fibrosis. [source] Type II collagen levels correlate with mineralization by articular cartilage vesiclesARTHRITIS & RHEUMATISM, Issue 9 2009Brian Jubeck Objective Pathologic mineralization is common in osteoarthritic (OA) cartilage and may be mediated by extracellular organelles known as articular cartilage vesicles (ACVs). Paradoxically, ACVs isolated from OA human cartilage mineralize poorly in vitro compared with those isolated from normal porcine cartilage. We recently showed that collagens regulate ACV mineralization. We sought to determine differences between collagens and collagen receptors on human and porcine ACVs as a potential explanation of their different mineralization behaviors. Methods ACVs were enzymatically released from old and young human and porcine hyaline articular cartilage. Western blotting was used to determine the presence of types I, II, VI, and X collagen and various collagen receptors on ACVs. Type II collagen was quantified by enzyme-linked immunosorbent assay. Biomineralization was assessed by measuring the uptake of 45Ca by isolated ACVs in agarose gels and by ACVs in situ in freeze-thawed cartilage. Results As previously shown, isolated human ACVs mineralized poorly in response to ATP compared with porcine ACVs, but human and porcine ACVs mineralized similarly in situ in freeze-thawed cartilage. Type II collagen levels were 100-fold higher in isolated human ACVs than in porcine ACVs. Type II collagen in human ACVs was of high molecular weight. Transglutaminase-crosslinked type II collagen showed increased resistance to collagenase, suggesting a possible explanation for residual collagen on human ACVs. Expression of other collagens and collagen receptors was similar on human and porcine ACVs. Conclusion Higher levels of type II collagen in human ACV preparations, perhaps mediated by increased transglutaminase crosslinking, may contribute to the decreased mineralization observed in isolated human ACVs in vitro. [source] |