Collagen Expression (collagen + expression)

Distribution by Scientific Domains

Kinds of Collagen Expression

  • i collagen expression
  • ii collagen expression
  • type i collagen expression
  • type ii collagen expression


  • Selected Abstracts


    Cloning and Functional Analysis of a Family of Nuclear Matrix Transcription Factors (NP/NMP4) that Regulate Type I Collagen Expression in Osteoblasts

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001
    Pasutha Thunyakitpisal
    Abstract Collagen expression is coupled to cell structure in connective tissue. We propose that nuclear matrix architectural transcription factors link cell shape with collagen promoter geometry and activity. We previously indicated that nuclear matrix proteins (NP/NMP4) interact with the rat type I collagen ,1(I) polypeptide chain (COL1A1) promoter at two poly(dT) sequences (sites A and B) and bend the DNA. Here, our objective was to determine whether NP/NMP4- COL1A1 binding influences promoter activity and to clone NP/NMP4. Promoter-reporter constructs containing 3.5 kilobases (kb) of COL1A1 5, flanking sequence were fused to a reporter gene. Mutation of site A or site B increased promoter activity in rat UMR-106 osteoblast-like cells. Several full-length complementary DNAs (cDNAs) were isolated from an expression library using site B as a probe. These clones expressed proteins with molecular weights and COL1A1 binding activity similar to NP/NMP4. Antibodies to these proteins disrupted native NP/NMP4- COL1A1 binding activity. Overexpression of specific clones in UMR-106 cells repressed COL1A1 promoter activity. The isolated cDNAs encode isoforms of Cys2His2 zinc finger proteins that contain an AT-hook, a motif found in architectural transcription factors. Some of these isoforms recently have been identified as Cas-interacting zinc finger proteins (CIZ) that localize to fibroblast focal adhesions and enhance metalloproteinase gene expression. We observed NP/NMP4/CIZ expression in osteocytes, osteoblasts, and chondrocytes in rat bone. We conclude that NP/NMP4/CIZ is a novel family of nuclear matrix transcription factors that may be part of a general mechanical pathway that couples cell structure and function during extracellular matrix remodeling. [source]


    ,-melanocyte,stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma?

    ARTHRITIS & RHEUMATISM, Issue 2 2009
    Agatha Kokot
    Objective Recently, we found that human dermal fibroblasts (HDFs) express melanocortin 1 receptors (MC-1R) that bind ,-melanocyte,stimulating hormone (,-MSH). In search of novel therapies for scleroderma (systemic sclerosis [SSc]), we used the bleomycin (BLM) model to investigate the effects of ,-MSH on collagen synthesis and fibrosis. Methods Collagen expression in HDFs was determined by real-time reverse transcription,polymerase chain reaction (RT-PCR) and Western blot analyses. Signal transduction studies included pharmacologic blockade, immunofluorescence analysis, Western blotting, and reporter,promoter assays. Oxidative stress was measured by fluorescence-activated cell sorter analysis, and anti,oxidative enzyme levels were determined by real-time RT-PCR and Western blot analyses. The effect of ,-MSH in the BLM mouse model of scleroderma was assessed by histologic, immunohistochemical, real-time RT-PCR, and protein analyses. Expression of MC-1R and pro-opiomelanocortin (POMC) in skin and HDF samples from patients with SSc was determined by RT-PCR and compared with that in samples from normal controls. Results Treatment with ,-MSH (and related peptides) suppressed BLM-induced expression of type I and type III collagen in HDFs, and this effect was cAMP-dependent. Neither BLM nor ,-MSH altered Smad signaling, but antioxidants inhibited BLM-induced collagen expression in vitro. In addition, ,-MSH suppressed BLM-induced oxidative stress and enhanced the expression of superoxide dismutase 2 (SOD2) and heme oxygenase 1 (HO-1). In the BLM mouse model, ,-MSH reduced skin fibrosis and collagen content and increased tissue levels of SOD2 and HO-1. In skin and HDFs from patients with SSc, both MC-1R and POMC messenger RNAs were detected, but there were no differences compared with healthy controls. Conclusion Alpha-melanocyte,stimulating hormone and related peptides that exert their effects via MC-1R may provide a novel antifibrogenic therapeutic tool for the treatment of fibrotic diseases such as scleroderma. [source]


    Sox genes regulate type 2 collagen expression in avian neural crest cells

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 8 2006
    Takashi Suzuki
    Neural crest cells give rise to a wide variety of cell types, including cartilage cells in the cranium and neurons and glial cells in the peripheral nervous system. To examine the relationship of cartilage differentiation and neural crest differentiation, we examined the expression of Col2a1, which encodes type 2 collagen often used as a cartilage marker, and compared it with the expression of Sox transcription factor genes, which are involved in neural crest development and chondrogenesis. We found that Col2a1 is expressed in many neural crest-derived cell types along with combinations of Sox9, Sox10 and LSox5. Overexpression studies reveal the activation of Col2a1 expression by Sox9 and Sox10, and cross-regulation of these Sox genes. Luciferase assay indicates a direct activation of the Col2a1 enhancer/promoter both by Sox9 and Sox10, and this activation is further enhanced by cAMP-dependent kinase (PKA) signaling. Our study suggests that the regulatory mechanisms are similar in cartilage and neural crest differentiation. [source]


    Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts

    EXPERIMENTAL DERMATOLOGY, Issue 8 2010
    Hyun Jeong Park
    Please cite this paper as: Vitamin C attenuates ERK signalling to inhibit the regulation of collagen production by LL-37 in human dermal fibroblasts. Experimental Dermatology 2010; 19: e258,e264. Abstract:, Vitamin C is used as an anti-ageing agent because of its collagen enhancing effects. The precise cellular signalling mechanism of vitamin C is not well known. Here, we investigate the profibrotic mechanism of vitamin C against LL-37. Antimicrobial peptide LL-37 decreases collagen expression at mRNA and protein levels in human dermal fibroblasts (HDFs). The ability of LL-37 to inhibit collagen expression is dependent on phosphorylation of extracellular signal-regulated kinase (ERK). HDFs and human keloid fibroblasts were treated with vitamin C followed by 2 h of LL-37 treatment. Collagen mRNA expression and total soluble collagen production inhibited by LL-37 was enhanced by treatment with 0.5 mm vitamin C. Vitamin C also decreased intracellular reactive oxygen intermediates (ROI) levels that were increased by LL-37. Furthermore, the phosphorylation of ERK was analysed by Western blot following treatment with vitamin C and LL-37. Vitamin C turned off phosphorylation of ERK that was induced by LL-37. Ets-1 transcriptional factor, which is involved in the regulation of collagen expression by LL-37, was also inhibited by vitamin C. This study shows that vitamin C enhances collagen production by inhibiting the ERK pathway induced by LL-37. [source]


    mTOR as a potential therapeutic target for treatment of keloids and excessive scars

    EXPERIMENTAL DERMATOLOGY, Issue 5 2007
    C. T. Ong
    Abstract:, Keloid is a dermal fibroproliferative disorder characterized by excessive deposition of extracellular matrix (ECM) components such as collagen, glycoproteins and fibronectin. The mammalian target of rapamycin (mTOR) is a serine/theronine kinase which plays an important role in the regulation of metabolic processes and translation rates. Published reports have shown mTOR as regulator of collagen expression and its inhibition induces a decrease in ECM deposition. Our aim was to investigate the role of mTOR in keloid pathogenesis and investigate the effect of rapamycin on proliferating cell nuclear antigen (PCNA), cyclin D1, collagen, fibronectin and alpha-smooth muscle actin (, -SMA) expression in normal fibroblasts (NF) and keloid fibroblasts (KF). Tissue extracts obtained from keloid scar demonstrated elevated expression of mTOR, p70KDa S6 kinase (p70S6K) and their activated forms, suggesting an activated state in keloid scars. Serum stimulation highlighted the heightened responsiveness of KF to mitogens and the importance of mTOR and p70S6K during early phase of wound healing. Application of rapamycin to monoculture NF and KF, dose- and time-dependently downregulates the expression of cytoplasmic PCNA, cyclin D1, fibronectin, collagen and , -SMA, demonstrating the anti-proliferative effect and therapeutic potential of rapamycin in the treatment of keloid scars. The inhibitory effect of rapamycin was found to be reversible following recovery in the expression of proteins following the removal of rapamycin from the culture media. These results demonstrate the important role of mTOR in the regulation of cell cycle and the expression of ECM proteins: fibronectin, collagen and , -SMA. [source]


    Bone morphogenetic protein-mediated type II collagen expression in pilomatricoma and cutaneous mixed tumor

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2005
    Hideki Mieno
    Background:, We have previously reported that type II collagen deposition in overlying dermo,epidermal junction (DEJ) of pilomatricoma is mediated by bone morphogenetic protein 2/4 (BMP 2/4) expressed by shadow cells (SCs) of pilomatricoma. Objective:, This time, we studied the expression of type II collagen and BMP in a large number of cases of pilomatricoma and extended our study to cutaneous mixed tumor (CMT). Results:, We found type II collagen deposition in the overlying DEJ (16 of 50 cases) and in the SCs (19/50) of pilomatricoma. The number of case of type II collagen deposition in DEJ (DEJ+) and in SCs (SC+) of pilomatricoma correlated to the chronological stage of pilomatricoma. We also found type II collagen deposition in overlying DEJ (two of 11) and in the stromal chondroid tissue (four of 11) of CMT. BMP 2 was expressed in most cases of pilomatricoma (37/50) and CMT (seven of 11). Conclusions:, The expression of type II collagen in pilomatricoma is dependent upon the chronological stage of pilomatricoma. Type II collagen expression in the overlying DEJ and chondroid matrix in CMT may be induced by BMP via the same mechanism as in pilomatricoma. [source]


    Salutary effects of Corydalis yanhusuo extract on cardiac hypertrophy due to pressure overload in rats

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2007
    Chengping Wen
    We have evaluated the effects of an alcohol extract from the rhizome of Corydalis yanhusuo W.T. (CY), a well-known traditional Chinese medicinal herb, on pressure-overloaded cardiac hypertrophy induced by transverse abdominal aorta constriction (TAAC) in rats. Rats were given vehicle or CY extract (200 or 50 mg kg,1 per day) from the second week after induction of pressure overload, for a period of 7 weeks. Haemodynamic parameters, relative heart weight and myocyte cross-sectional area were measured in each group. We also estimated left ventricular (LV) collagen volume fraction (CVF) using Masson trichrome staining, and type I collagen expression by Western blot assay. Chronic TAAC caused notable cardiac hypertrophy and heart dysfunction. Significant collagen deposition and greater type I collagen expression were found in model control rats. These changes were not significantly reversed after treatment with 50 mgkg,1 CY, whereas 200 mgkg,1 significantly improved heart function and prevented cardiac hypertrophy, with parallel reductions in myocardial fibrosis, as evidenced by reduced LV CVF and reduced levels of type I collagen. In conclusion, chronic treatment of rats with CY extract attenuated development of cardiac hypertrophy. [source]


    Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2002
    Hee-Chul Kang
    We previously demonstrated that curcumin, a well-known antioxidant, inhibits collagen deposition in carbon tetrachloride-induced liver injury in rats. The major effector cells responsible for collagen synthesis in the liver are activated hepatic stellate cells. In this study, we investigated the inhibitory effects of curcumin on the collagen synthesis and activation of rat hepatic stellate cells in-vitro, and on hepatic stellate cell activation in-vivo. The effects of curcumin on the production of collagen and smooth muscle ,-actin proteins and of ,1(I) collagen mRNA were studied in-vivo and in-vitro. The effect of curcumin on DNA synthesis was also determined in-vitro. In-vivo, treatment with curcumin reduced collagen deposition and smooth muscle ,-actin-positive areas and lowered mRNA levels of type I collagen in the liver. In-vitro, curcumin at a concentration of 5 ,g mL,1 reduced DNA synthesis, and downregulated smooth muscle ,-actin and type I collagen expression, and ,1(I) collagen mRNA expression. We concluded that curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro, and thus may prove a valuable anti-fibrogenic agent. [source]


    Three-Dimensional Culture Environments Enhance Osteoblast Differentiation

    JOURNAL OF PROSTHODONTICS, Issue 7 2008
    Jessica Boehrs BS
    Abstract Purpose: In previous work from our laboratory, we demonstrated that the three-dimensional (3D) cell cultures developed in simulated microgravity environments enhanced osseous-like aggregate formation and accelerated preosteoblast cell differentiation. Thus, as described here, we hypothesize that aggregate formation and mineralization would occur with fewer than 10 × 106 cells as previously described. Materials and Methods: Human preosteoblastic cells were cultured at different concentrations in a rotary wall vessel to simulate microgravity for 7 days. Aggregate size was assessed, and mineralization and collagen expression detected using Von Kossa and Masson Trichrome staining. Scanning electron microscopy was used for structural and elemental analysis. Immunohistochemistry was used to detect expression of the osteogenic markers BSPII and osteopontin (OP). Results: Size and calcium expression were dependent upon cultured cell number (p < 0.01). Calcium and collagen expression were detected throughout the aggregate, but organization was independent of cell number. Aggregates had similar microscopic structural patterns demonstrating organized development. Presence of BSPII and OP showed that the aggregates share common differentiation proteins with in vivo bone formation. Conclusions: These results may lead to novel bone engineering techniques associated with dental treatment. [source]


    Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 2 2010
    Gail C. Donegan
    Abstract Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters

    LASERS IN SURGERY AND MEDICINE, Issue 6 2010
    Nilza Nelly Fontana Lopes DDS
    Abstract Background and Objectives Several studies have suggested that low-level laser therapy (LLLT) can ameliorate oral mucositis; however, the mechanisms involved are not well understood. The aim of this study was to investigate the mechanisms of action of LLLT on chemotherapy-induced oral mucositis, as related to effects on collagen expression and inflammation. Materials and Methods A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil, followed by surface irritation. Animals were randomly allocated into three groups, and treated with an InGaAIP diode laser at a wavelength of 660,nm and output power of 35 or 100,mW laser, or no laser. Clinical severity of mucositis was assessed at four time-points by a blinded examiner. Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. Collagen was qualitatively and quantitatively evaluated after picrosirius staining. The density of the neutrophil infiltrate was also scored. Results Peak clinical severity of mucositis was reduced in the 35,mW laser group as compared to the 100,mW and control groups. The reduced peak clinical severity of mucositis in the 35,mW laser group was accompanied by a decrease in the number of neutrophils and an increase in the proportion of mature collagen as compared to the other two groups. The total quantity of collagen was significantly higher in the control (no laser) group at the day 11 time-point, as compared to the 35,mW laser group, consistent with a more prolonged inflammatory response in the control group. Conclusion This study supports two mechanisms of action for LLLT in reducing mucositis severity. The increase in collagen organization in response to the 35,mW laser indicates that LLLT promotes wound healing. In addition, LLLT also appears to have an anti-inflammatory effect, as evidenced by the reduction in neutrophil infiltrate. Lasers Surg. Med. 42:546,552, 2010. © 2010 Wiley,Liss, Inc. [source]


    Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules

    NEPHROLOGY, Issue 8 2008
    GUOSHUANG XU
    SUMMARY: Aim: Aldosterone plays a crucial role in renal fibrosis by inducing mesangial cell proliferation and promoting collagen synthesis in renal fibroblasts. However, renal proximal tubule involvement in aldosterone-induced collagen synthesis has not yet been identified. The aim of this study was to examine the potential role of aldosterone in collagen expression and its possible mineralocorticoid receptor (MR)-dependent pathway, mediated by activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured human renal proximal tubular epithelial (HKC) cells. Methods: After HKC cells were stimulated by aldosterone with different concentrations for various time and periods, the gene expression and protein synthesis of collagen I, II, III and IV were measured by real-time polymerase chain reaction and western blot, respectively. ERK1/2 activation, ,-smooth muscle actin (,-SMA), and E-cadherin were also detected by western blot. Results: Aldosterone can increase ERK1/2 phosphorylation of human renal proximal tubular epithelial cells in a time- and dose-dependent manner. Although aldosterone had no effect on collagen I and II expression, it increased expression of ,-SMA and collagen III and IV and decreased that of E-cadherin in HKC cells after 48 h. These effects could be prevented by a ERK pathway inhibitor, U0126, or by a selective MR antagonist, spironolactone. Conclusion: The results suggest that aldosterone plays a pivotal role in tubulointerstitial fibrosis by promoting tubular epithelial,mesenchymal transition and collagen synthesis in proximal tubular cells. The process is MR-dependent, and mediated by ERK1/2 mitogen-activated protein kinase pathway. [source]


    Novel Aspects of Intrinsic and Extrinsic Aging of Human Skin: Beneficial Effects of Soy Extract,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2005
    Kirstin M. Südel
    ABSTRACT Biochemical and structural changes of dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal-epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin. [source]


    Masticatory Loading, Function, and Plasticity: A Microanatomical Analysis of Mammalian Circumorbital Soft-Tissue Structures

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2010
    Eldin Ja, arevi
    Abstract In contrast to experimental evidence regarding the postorbital bar, postorbital septum, and browridge, there is exceedingly little evidence regarding the load-bearing nature of soft-tissue structures of the mammalian circumorbital region. This hinders our understanding of pronounced transformations during primate origins, in which euprimates evolved a postorbital bar from an ancestor with the primitive mammalian condition where only soft tissues spanned the lateral orbital margin between frontal bone and zygomatic arch. To address this significant gap, we investigated the postorbital microanatomy of rabbits subjected to long-term variation in diet-induced masticatory stresses. Rabbits exhibit a masticatory complex and feeding behaviors similar to primates, yet retain a more primitive mammalian circumorbital region. Three cohorts were obtained as weanlings and raised on different diets until adult. Following euthanasia, postorbital soft tissues were dissected away, fixed, and decalcified. These soft tissues were divided into inferior, intermediate, and superior units and then dehydrated, embedded, and sectioned. H&E staining was used to characterize overall architecture. Collagen orientation and complexity were evaluated via picrosirius-red staining. Safranin-O identified proteoglycan content with additional immunostaining performed to assess Type-II collagen expression. Surprisingly, the ligament along the lateral orbital wall was composed of elastic fibrocartilage. A more degraded organization of collagen fibers in this postorbital fibrocartilage is correlated with increased masticatory forces due to a more fracture-resistant diet. Furthermore, the lack of marked changes in the extracellular composition of the lateral orbital wall related to tissue viscoelasticity suggests it is unlikely that long-term exposure to elevated masticatory stresses underlies the development of a bony postorbital bar. Anat Rec, 293:642,650, 2010. © 2010 Wiley-Liss, Inc. [source]


    Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo,

    THE JOURNAL OF GENE MEDICINE, Issue 1 2006
    Gunter Kaul
    Abstract Background Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. Methods Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. Results In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. Conclusions The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor ,,activated kinase 1/activating transcription factor 2 signaling: A potential clinical implication for osteoarthritis

    ARTHRITIS & RHEUMATISM, Issue 8 2010
    Tian-Fang Li
    Objective To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor , (TGF,) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Methods Joint disease in Smad3-knockout (Smad3,/,) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3,/, mice. Results In Smad3,/, mice, an end-stage OA phenotype gradually developed. TGF,-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3,/, mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3,/, cells restored the normal p38 response to TGF,. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3,/, chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms ,, ,, and ,, but not ,. Conclusion Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3,phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA. [source]


    MicroRNA-29, a key regulator of collagen expression in systemic sclerosis

    ARTHRITIS & RHEUMATISM, Issue 6 2010
    Britta Maurer
    Objective To investigate the role of microRNA (miRNA) as posttranscriptional regulators of profibrotic genes in systemic sclerosis (SSc). Methods MicroRNA, which target collagens, were identified by in silico analysis. Expression of miRNA-29 (miR-29) was determined by TaqMan real-time polymerase chain reaction analysis of skin biopsy and fibroblast samples from SSc patients and healthy controls as well as in the mouse model of bleomycin-induced skin fibrosis. Cells were transfected with precursor miRNA (pre-miRNA)/anti-miRNA of miR-29 using Lipofectamine. Collagen gene expression was also studied in luciferase reporter gene assays. For stimulation, recombinant transforming growth factor , (TGF,), platelet-derived growth factor B (PDGF-B), or interleukin-4 (IL-4) was used. The effects of inhibiting PDGF-B and TGF, signaling on the levels of miR-29 were studied in vitro and in the bleomycin model. Results We found that miR-29a was strongly down-regulated in SSc fibroblasts and skin sections as compared with the healthy controls. Overexpression in SSc fibroblasts significantly decreased, and accordingly, knockdown in normal fibroblasts increased, the levels of messenger RNA and protein for type I and type III collagen. In the reporter gene assay, cotransfection with pre-miR-29a significantly decreased the relative luciferase activity, which suggests a direct regulation of collagen by miR-29a. TGF,, PDGF-B, or IL-4 reduced the levels of miR-29a in normal fibroblasts to those seen in SSc fibroblasts. Similar to human SSc, the expression of miR-29a was reduced in the bleomycin model of skin fibrosis. Inhibition of PDGF-B and TGF, pathways by treatment with imatinib restored the levels of miR-29a in vitro and in the bleomycin model in vivo. Conclusion These data add the posttranscriptional regulation of collagens by miR-29a as a novel aspect to the fibrogenesis of SSc and suggest miR-29a as a potential therapeutic target. [source]


    Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts

    ARTHRITIS & RHEUMATISM, Issue 11 2009
    Galina S. Bogatkevich
    Objective Myofibroblasts are the principal mesenchymal cells responsible for tissue remodeling, collagen deposition, and the restrictive nature of lung parenchyma associated with pulmonary fibrosis. We previously reported that thrombin activates protease-activated receptor 1 (PAR-1) and induces a myofibroblast phenotype in normal lung fibroblasts resembling the phenotype of scleroderma lung myofibroblasts. We undertook this study to investigate whether a selective direct thrombin inhibitor, dabigatran, interferes with signal transduction in human lung fibroblasts induced by thrombin and mediated via PAR-1. Methods Lung fibroblast proliferation was analyzed using the Quick Cell Proliferation Assay. Expression and organization of ,-smooth muscle actin (,-SMA) was studied by immunofluorescence staining and immunoblotting. Contractile activity of lung fibroblasts was measured by a collagen gel contraction assay. Connective tissue growth factor (CTGF) and type I collagen expression was analyzed on Western blots. Results Dabigatran, at concentrations of 50,1,000 ng/ml, inhibited thrombin-induced cell proliferation, ,-SMA expression and organization, and the production of collagen and CTGF in normal lung fibroblasts. Moreover, when treated with dabigatran (1 ,g/ml), scleroderma lung myofibroblasts produced 6-fold less ,-SMA, 3-fold less CTGF, and 2-fold less type I collagen compared with untreated cells. Conclusion Dabigatran restrains important profibrotic events in lung fibroblasts and warrants study as a potential antifibrotic drug for the treatment of fibrosing lung diseases such as scleroderma lung disease and idiopathic pulmonary fibrosis. [source]


    Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen

    ARTHRITIS & RHEUMATISM, Issue 7 2009
    Markella Ponticos
    Objective Connective tissue growth factor (CTGF; CCN2) is overexpressed in systemic sclerosis (SSc) and has been hypothesized to be a key mediator of the pulmonary fibrosis frequently observed in this disease. CTGF is induced by transforming growth factor , (TGF,) and is a mediator of some profibrotic effects of TGF, in vitro. This study was undertaken to investigate the role of CTGF in enhanced expression of type I collagen in bleomycin-induced lung fibrosis, and to delineate the mechanisms of action underlying the effects of CTGF on Col1a2 (collagen gene type I ,2) in this mouse model and in human pulmonary fibroblasts. Methods Transgenic mice that were carrying luciferase and ,-galactosidase reporter genes driven by the Col1a2 enhancer/promoter and the CTGF promoter, respectively, were injected with bleomycin to induce lung fibrosis (or saline as control), and the extracted pulmonary fibroblasts were incubated with CTGF blocking agents. In vitro, transient transfection, promoter/reporter constructs, and electrophoretic mobility shift assays were used to determine the mechanisms of action of CTGF in pulmonary fibroblasts. Results In the mouse lung tissue, CTGF expression and promoter activity peaked 1 week after bleomycin challenge, whereas type I collagen expression and Col1a2 promoter activity peaked 2 weeks postchallenge. Fibroblasts isolated from the mouse lungs 14 days after bleomycin treatment retained a profibrotic expression pattern, characterized by greatly elevated levels of type I collagen and CTGF protein and increased promoter activity. In vitro, inhibition of CTGF by specific small interfering RNA and neutralizing antibodies reduced the collagen protein expression and Col1a2 promoter activity. Moreover, in vivo, anti-CTGF antibodies applied after bleomycin challenge significantly reduced the Col1a2 promoter activity by ,25%. The enhanced Col1a2 promoter activity in fibroblasts from bleomycin-treated lungs was partly dependent on Smad signaling, whereas CTGF acted on the Col1a2 promoter by a mechanism that was independent of the Smad binding site, but was, instead, dependent on the ERK-1/2 and JNK MAPK pathways. The CTGF effect was mapped to the proximal promoter region surrounding the inverted CCAAT box, possibly involving CREB and c-Jun. In human lung fibroblasts, the human COL1A2 promoter responded in a similar manner, and the mechanisms of action also involved ERK-1/2 and JNK signaling. Conclusion Our results clearly define a direct profibrotic effect of CTGF and demonstrate its contribution to lung fibrosis through transcriptional activation of Col1a2. Blocking strategies revealed the signaling mechanisms involved. These findings show CTGF to be a rational target for therapy in fibrotic diseases such as SSc. [source]


    ,-melanocyte,stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma?

    ARTHRITIS & RHEUMATISM, Issue 2 2009
    Agatha Kokot
    Objective Recently, we found that human dermal fibroblasts (HDFs) express melanocortin 1 receptors (MC-1R) that bind ,-melanocyte,stimulating hormone (,-MSH). In search of novel therapies for scleroderma (systemic sclerosis [SSc]), we used the bleomycin (BLM) model to investigate the effects of ,-MSH on collagen synthesis and fibrosis. Methods Collagen expression in HDFs was determined by real-time reverse transcription,polymerase chain reaction (RT-PCR) and Western blot analyses. Signal transduction studies included pharmacologic blockade, immunofluorescence analysis, Western blotting, and reporter,promoter assays. Oxidative stress was measured by fluorescence-activated cell sorter analysis, and anti,oxidative enzyme levels were determined by real-time RT-PCR and Western blot analyses. The effect of ,-MSH in the BLM mouse model of scleroderma was assessed by histologic, immunohistochemical, real-time RT-PCR, and protein analyses. Expression of MC-1R and pro-opiomelanocortin (POMC) in skin and HDF samples from patients with SSc was determined by RT-PCR and compared with that in samples from normal controls. Results Treatment with ,-MSH (and related peptides) suppressed BLM-induced expression of type I and type III collagen in HDFs, and this effect was cAMP-dependent. Neither BLM nor ,-MSH altered Smad signaling, but antioxidants inhibited BLM-induced collagen expression in vitro. In addition, ,-MSH suppressed BLM-induced oxidative stress and enhanced the expression of superoxide dismutase 2 (SOD2) and heme oxygenase 1 (HO-1). In the BLM mouse model, ,-MSH reduced skin fibrosis and collagen content and increased tissue levels of SOD2 and HO-1. In skin and HDFs from patients with SSc, both MC-1R and POMC messenger RNAs were detected, but there were no differences compared with healthy controls. Conclusion Alpha-melanocyte,stimulating hormone and related peptides that exert their effects via MC-1R may provide a novel antifibrogenic therapeutic tool for the treatment of fibrotic diseases such as scleroderma. [source]


    Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type x collagen gene

    ARTHRITIS & RHEUMATISM, Issue 1 2009
    Akiro Higashikawa
    Objective Type X collagen and runt-related transcription factor 2 (RUNX-2) are known to be important for chondrocyte hypertrophy during skeletal growth and repair and development of osteoarthritis (OA) in mice. Aiming at clinical application, this study was undertaken to investigate transcriptional regulation of human type X collagen by RUNX-2 in human cells. Methods Localization of type X collagen and RUNX-2 was determined by immunohistochemistry, and their functional interaction was examined in cultured mouse chondrogenic ATDC-5 cells. Promoter activity of the human type X collagen gene (COL10A1) was examined in human HeLa, HuH7, and OUMS27 cells transfected with a luciferase gene containing a 4.5-kb promoter and fragments. Binding to RUNX-2 was examined by electrophoretic mobility shift assay and chromatin immunoprecipitation. Results RUNX-2 and type X collagen were co-localized in mouse limb cartilage and bone fracture callus. Gain and loss of function of RUNX-2 revealed that RUNX-2 is essential for type X collagen expression and terminal differentiation of chondrocytes. Human COL10A1 promoter activity was enhanced by RUNX-2 alone and more potently by RUNX-2 in combination with the coactivator core-binding factor , in all 3 human cell lines examined. Deletion, mutagenesis, and tandem repeat analyses identified the core responsive element as the region between ,89 and ,60 bp (termed the hypertrophy box [HY box]), which showed specific binding to RUNX-2. Other putative RUNX-2 binding motifs in the human COL10A1 promoter did not respond to RUNX-2 in human cells. Conclusion Our findings indicate that the HY box is the core element responsive to RUNX-2 in human COL10A1 promoter. Studies on molecular networks related to RUNX-2 and the HY box will lead to treatments of skeletal growth retardation, bone fracture, and OA. [source]


    Increased collagen and aggrecan degradation with age in the joints of Timp3,/, mice

    ARTHRITIS & RHEUMATISM, Issue 3 2007
    Solmaz Sahebjam
    Objective To investigate the in vivo effect of an imbalance between metalloproteinases and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in mouse articular cartilage. Methods Hind joints of Timp3,/, and wild-type mice were examined by routine staining and by immunohistochemical analysis using antibodies specific for type X collagen and for the neoepitopes produced on proteolytic cleavage of aggrecan (, VDIPEN and , NVTEGE) and type II collagen. The neoepitope generated on cleavage of type II collagen by collagenases was quantitated in sera by enzyme-linked immunosorbent assay. Results Articular cartilage from Timp3 -knockout animals (ages ,6 months) showed reduced Safranin O staining and an increase in ,VDIPEN content compared with cartilage from heterozygous and wild-type animals. There was also a slight increase in , NVTEGE content in articular cartilage and menisci of Timp3,/, animals. Chondrocytes showed strong pericellular staining for type II collagen cleavage neoepitopes, particularly in the superficial layer, in knockout mice. Also, there was more type X collagen expression in the superficial zone of articular cartilage, especially around clusters of proliferating chondrocytes, in the knockout mice. More type II collagen cleavage product was found in the serum of Timp3,/, mice compared with wild-type animals. This increase was significant in 15-month-old animals. Conclusion These results indicate that TIMP-3 deficiency results in mild cartilage degradation similar to changes seen in patients with osteoarthritis, suggesting that an imbalance between metalloproteinases and TIMP-3 may play a pathophysiologic role in the development of this disease. [source]


    Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts

    ARTHRITIS & RHEUMATISM, Issue 7 2006
    Youngqing Wang
    Objective Scleroderma (systemic sclerosis; SSc) is an autoimmune disease characterized by vasculopathy and widespread organ fibrosis. Altered fibroblast function, both in vivo and in vitro, is well documented and illustrated by augmented synthesis and deposition of extracellular matrix proteins. We undertook this study to investigate the possibility that epigenetic mechanisms mediate the emergence and persistence of the altered SSc fibroblast phenotype. Methods The effects of DNA methyltransferase and histone deacetylase inhibitors on collagen expression and the level of epigenetic mediators in fibroblasts were examined. The effects of transient transfection of SSc fibroblasts with FLI1 gene and normal cells with FLI1 antisense construct on collagen expression were determined. The methylation status of the FLI1 promoter was tested in cultured cells and in SSc and normal skin biopsy specimens. Results Increased levels of epigenetic mediators in SSc fibroblasts were noted. The addition of epigenetic inhibitors to cell cultures normalized collagen expression in SSc fibroblasts. The augmented collagen synthesis by SSc fibroblasts was linked to epigenetic repression of the collagen suppressor gene FLI1. Heavy methylation of the CpG islands in the FLI1 promoter region was demonstrated in SSc fibroblasts and skin biopsy specimens. Conclusion The results of this study indicate that epigenetic mechanisms may mediate the fibrotic manifestations of SSc. The signal transduction leading to the SSc fibrotic phenotype appears to converge on DNA methylation and histone deacetylation at the FLI1 gene. [source]


    Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
    Christopher V. Gemmiti
    Abstract Cartilage tissue-engineering strategies aim to produce a functional extracellular matrix similar to that of the native tissue. However, none of the myriad approaches taken have successfully generated a construct possessing the structure, composition, and mechanical properties of healthy articular cartilage. One possible approach to modulating the matrix composition and mechanical properties of engineered tissues is through the use of bioreactor-driven mechanical stimulation. In this study, we hypothesized that exposing scaffold-free cartilaginous tissue constructs to 7 days of continuous shear stress at 0.001 or 0.1,Pa would increase collagen deposition and tensile mechanical properties compared to that of static controls. Histologically, type II collagen staining was evident in all construct groups, while a surface layer of type I collagen increased in thickness with increasing shear stress magnitude. The areal fraction of type I collagen was higher in the 0.1-Pa group (25.2,±,2.2%) than either the 0.001-Pa (13.6,±,3.8%) or the static (7.9,±,1.5%) group. Type II collagen content, as assessed by ELISA, was also higher in the 0.1-Pa group (7.5,±,2.1%) compared to the 0.001-Pa (3.0,±,2.25%) or static groups (3.7,±,3.2%). Temporal gene expression analysis showed a flow-induced increase in type I and type II collagen expression within 24,h of exposure. Interestingly, while the 0.1-Pa group showed higher collagen content, this group retained less sulfated glycosaminoglycans in the matrix over time in bioreactor culture. Increases in both tensile Young's modulus and ultimate strength were observed with increasing shear stress, yielding constructs possessing a modulus of nearly 5,MPa and strength of 1.3,MPa. This study demonstrates that shear stress is a potent modulator of both the amount and type of synthesized extracellular matrix constituents in engineered cartilaginous tissue with corresponding effects on mechanical function. Biotechnol. Bioeng. 2009; 104: 809,820 © 2009 Wiley Periodicals, Inc. [source]