Collagen Content (collagen + content)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Effects of lipopolysaccharide on platelet-derived growth factor isoform and receptor expression in cultured rat common bile duct fibroblasts and cholangiocytes

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2009
Tae-Hyeon Kim
Abstract Background and Aim:, Little is known about the role of platelet-derived growth factor (PDGF) in biliary fibrosis in the setting of bacterial colonization of the biliary tree. We therefore sought to investigate whether exposure to bacterial lipopolysaccharide (LPS) alters PDGF isoform and receptor expression in cultured rat common bile duct fibroblasts (CBDF) and normal rat cholangiocytes (NRC). Methods:, Collagen content in cells and media was assessed by colorimetric assay and gel electrophoresis. mRNA levels of PDGF-A and -B, and PDGF-Receptors (PDGF-R) , and , were measured by relative quantitative real-time PCR. Protein levels of PDGF-AA, AB and BB were measured by ELISA, and PDGF-R, and PDGF-R, by Western blot. Results:, In CBDF, LPS increased total soluble collagen synthesis and secretion. PDGF-R, and , mRNA and protein were also increased by LPS treatment in CBDF. Lipopolysaccharide treatment elicited an increase in PDGF-A and -B mRNA levels in CBDF. In NRC, levels of PDGF-A mRNA increased in a dose-dependent fashion following LPS treatment, whereas PDGF-B mRNA showed no response. PDGF-AA secretion was higher by CBDF than by NRC. PDGF-BB levels were also higher in CBDF than in NRC. While PDGF-BB levels did not respond to LPS treatment in CBDF, there was a dose-dependent response of this isoform to LPS in NRC. Intracellular and secreted PDGF-AB increased with LPS treatment in NRC. Conclusions:, These results support a model in which chronic bacterial colonization of the biliary tree induces fibrosis through PDGF-dependent mechanisms. [source]


Inhibition of plasminogen activator inhibitor-1 expression by siRNA in rat hepatic stellate cells

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 12 2008
Ping-Fang Hu
Abstract Background and Aim:, The plasminogen activator/plasmin system is known to regulate the extracellular matrix turnover. The aim of this study was to detect the role of plasminogen activator inhibitor-1 (PAI-1) during liver fibrogenesis and investigate the functional effects of PAI-1 gene silencing in rat hepatic stellate cells (HSCs) using small interfering RNA (siRNA). Methods:, Hepatic fibrosis in rats was induced through serial subcutaneously injections of CCl4 and the expression of PAI-1 was detected by immunohistochemistry and reverse transcription,polymerase chain reaction (PCR). PAI-1 siRNA molecules were constructed and transiently transfected into HSC-T6 using the cell suspension transfection method. The pSUPER RNA interfering system was used to establish the HSC stable cell line pSUPER-shPAI. Expression of alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1, and collagen types I and III were evaluated by real-time PCR. Cell proliferation and the cell cycle were determined by the methyl thiazolyl tetrazolium (MTT) method and flow cytometry. Collagen content in HSCs supernatant was evaluated by enzyme-linked immunosorbent assay. Results:, The results showed that PAI-1 was upregulated during liver fibrosis, and its expression was closely correlated with the deposition of collagens. SiRNA molecules were successfully transfected into HSCs and induced inhibition of PAI-1 expression time dependently. Moreover, PAI-1 siRNA treatment downregulated alpha-smooth muscle actin, transforming growth factor-beta, tissue inhibitor of metalloproteinases-1 expression, and inhibited collagen types I and III synthesis both at the mRNA and protein level in transiently and stably transfected HSCs. Conclusions:, This study suggests a significant functional role for PAI-1 in the development of liver fibrosis and that downregulating PAI-1 expression might present as a potential strategy to treat liver fibrosis. [source]


Collagen content and architecture of the pectoralis muscle in male chicks and broilers reared under various nutritional conditions

ANIMAL SCIENCE JOURNAL, Issue 2 2010
Chamali DAS
ABSTRACT Varying chicken growth rates were induced with different nutritional regimes, and the collagen content and architecture of M. pectoralis (PT) were compared among 21-day-old chicks and broilers at 80 or 95 days of age. The percentage of muscle weight to live weight was higher in rapid growing chicks (8.4%) than slow growing chicks (6.3%). The 80-day-old broilers engaged in compensatory growth after the early slow growth period producing PT muscle at 11% of live weight. The 80- and 95-day-old chicks with restricted late growth after an early rapid growth period showed PT weight at 8% and 9% of live weight, respectively. Collagen content of the PT muscle markedly decreased from the chicks to the broilers. The collagen concentration was higher in the late-growth restricted broilers (1.67,1.88 mg/g) than the compensatory growth broilers (1.01,1.10 mg/g). Collagen concentration did not differ between the rapid and slow growing chicks (2.72 and 2.94 mg/g). Scanning electron micrographs showed thick and thin perimysia, and honeycomb endomysia. In the perimysia, a stack layer of collagen platelets and a reticular layer of collagen fiber cords were distinguished and collagen baskets of adipocytes were observed. The perimysial collagen fibers became thicker during growth of the chicks to broilers. However, in the late-growth restricted broilers, the perimysial collagen fibers seemed to have retarded development compared with the compensatory growth birds. The PT muscle of chickens develops optimally when body growth is enhanced. The PT muscle of the compensatory growth broilers had improved collagen architecture regardless of the marked decrease in collagen content. [source]


Age Dependency of Myocardial Structure: A Quantitative Two-Dimensional Echocardiography Study in a Normal Population

ECHOCARDIOGRAPHY, Issue 3 2000
MARIA-AURORA MORALES M.D.
Histological changes of the myocardium occur with aging due to an increase in collagen content, hypertrophy of fibers, and patchy fibrosis. Quantitative analysis of conventional echocardiographic images provides an in vivo assessment of myocardial structure by the evaluation of the gray level distribution; with this technique, a relation between myocardial fibrosis and pathological ultrasonic response has been documented. The aim of this study was to evaluate the relation between ultrason-ically assessed myocardial structure and age in a normal population. Seventy-eight subjects (47 men; mean age, 51 years; age range, 23,87 years) without apparent cardiovascular and systemic disease underwent conventional two-dimensional echocardiographic examinations. Still frames at end-diastole from apical four-chamber view were digitized and converted in matrices of 256 × 256 pixels. First-order statistical analysis was performed to describe a region of interest in the interventricular septum. The following parameters were studied: mean (gray level amplitude), standard deviation (overall contrast), uniformity (tonal organization), and entropy (tendency of gray levels to be spread). Myocardial structure was assessed in 75 of 78 subjects, divided into three groups: I, age 23,40 years; II, age 41,65 years; and III, > 65 years. Significant differences for all the parameters were found between the age groups. Age correlated directly with mean and entropy (r = 0.77 and 0.69, respectively) and inversely with uniformity (r = 0.70). Our results suggest that quantitative echocardiography can reveal age-related changes in myocardial structure that are characterized by a greater echogenicity and loss in tonal organization, possibly due to increased collagen content within the fibers. [source]


The influence of strenuous exercise on collagen characteristics of articular cartilage in Thoroughbreds age 2 years

EQUINE VETERINARY JOURNAL, Issue 6 2000
P. A. J. BRAMA
Summary In order to assess the influence of strenuous exercise on collagen characteristics of articularcartilage, the response of the collagen network was studied in seven 2-year-old Thoroughbreds subjected to strenuous exercise compared to 7 nontrained individuals. After 13 weeks, the animals were subjected to euthanasia, fetlock joints of the forelimbs were scored macroscopically after Indian Ink staining, and articular cartilage from different locations of the articular surface of the proximal first phalanx was sampled and analysed for water content, collagen content, hydroxylysine content and amount of hydroxylysylpyridinoline (HP) crosslinks. Gross lesions were significantly more severe in the exercised than in the nonexercised group. In the control animals, the characteristic site-specific differences in collagen parameters were found as described earlier, but in the strenuously exercised animals this physiological biochemical heterogeneity had disappeared. In the exercised animals, an increase in water content and a sharp decrease in HP crosslinking was found that was correlated with the presence of wear lines. It is concluded that the strenuous exercise provoked significant alterations in the characteristics of the collagen network of the articular cartilage of the fetlock joint which were suggestive of microdamage and loosening of the collagen network. The collagen component of cartilage, in contrast to the proteoglycan component, is known to have a very limited capacity for repairand remodelling due to an extremely low turnover rate. Therefore, alterations within the articular collagen network might be expected to play an important role in the pathophysiology of degenerative joint disorders. [source]


Relationship of serum fibrosis markers with liver fibrosis stage and collagen content in patients with advanced chronic hepatitis C,

HEPATOLOGY, Issue 3 2008
Robert J. Fontana
This study determined the utility of a panel of serum fibrosis markers along with routine laboratory tests in estimating the likelihood of histological cirrhosis in a cohort of prior nonresponders with chronic hepatitis C. The relationship between serum markers and quantitative hepatic collagen content was also determined. Liver biopsy samples from 513 subjects enrolled in the HALT-C trial were assigned Ishak fibrosis scores. The collagen content of 386 sirius-red stained, nonfragmented biopsy samples was quantified using computerized morphometry. Serum tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), amino-terminal peptide of type III procollagen (PIIINP), hyaluronic acid (HA), and YKL-40 levels were determined using commercially available assays. Sixty-two percent of patients had noncirrhotic fibrosis (Ishak stage 2-4) whereas 38% had cirrhosis (Ishak stage 5,6). Multivariate analysis identified a 3-variable model (HA, TIMP-1, and platelet count) that had an area under the receiver operating curve (AUROC) of 0.81 for estimating the presence of cirrhosis. This model was significantly better than that derived from the cirrhosis discriminant score (AUROC 0.70), the AST-to-platelet ratio (AUROC 0.73), and a prior model developed in HALT-C patients (AUROC 0.79). Multivariate analysis demonstrated that the serum fibrosis markers correlated substantially better with Ishak fibrosis scores than with the log hepatic collagen content (AUROC 0.84 versus 0.72). Conclusion: A 3-variable model consisting of serum HA, TIMP-1, and platelet count was better than other published models in identifying cirrhosis in HALT-C Trial subjects. The stronger correlation of the serum markers with Ishak scores suggests that serum fibrosis markers reflect the pattern of fibrosis more closely than the quantity of hepatic collagen. (HEPATOLOGY 2008.) [source]


Left ventricular hypertrophy in rats with biliary cirrhosis

HEPATOLOGY, Issue 3 2003
Javier Inserte
Portal hypertension induces neuroendocrine activation and a hyperkinetic circulation state. This study investigated the consequences of portal hypertension on heart structure and function. Intrahepatic portal hypertension was induced in male Sprague-Dawley rats by chronic bile duct ligation (CBDL). Six weeks later, CBDL rats showed higher plasma angiotensin-II and endothelin-1 (P < .01), 56% reduction in peripheral resistance and 73% reduction in pulmonary resistance (P < .01), 87% increase in cardiac index and 30% increase in heart weight (P < .01), and increased myocardial nitric oxide (NO) synthesis. In CBDL rats, macroscopic analysis demonstrated a 30% (P < .01) increase in cross-sectional area of the left ventricular (LV) wall without changes in the LV cavity or in the right ventricle (RV). Histomorphometric analysis revealed increased cell width (12%, P < .01) of cardiomyocytes from the LV of CBDL rats, but no differences in myocardial collagen content. Myocytes isolated from the LV were wider (12%) and longer (8%) than right ventricular myocytes (P < .01) in CBDL rats but not in controls. CBDL rats showed an increased expression of ANF and CK-B genes (P < .01). Isolated perfused CBDL hearts showed pressure/end-diastolic pressure curves and response to isoproterenol identical to sham hearts, although generated wall tension was reduced because of the increased wall thickness. Coronary resistance was markedly reduced. This reduction was abolished by inhibition of NO synthesis with N -nitro-L-arginine. Expression of eNOS was increased in CBDL hearts. In conclusion, portal hypertension associated to biliary cirrhosis induces marked LV hypertrophy and increased myocardial NO synthesis without detectable fibrosis or functional impairment. This observation could be relevant to patients with cirrhosis. [source]


Fetal programming of fat and collagen in porcine skeletal muscles

JOURNAL OF ANATOMY, Issue 6 2005
J. F. Karunaratne
Abstract Connective tissue plays a key role in the scaffolding and development of skeletal muscle. Pilot studies carried out in our laboratory have shown that the smallest porcine littermate has a higher content of connective tissue within skeletal muscle compared with its largest littermate. The present study investigated the prenatal development of intralitter variation in terms of collagen content within connective tissue and intramuscular fat of the M. semitendinosus. Twenty-three pairs of porcine fetuses from a Large White,Landrace origin were used aged from 36 to 86 days of gestation. The largest and smallest littermates were chosen by weight and the M. semitendinosus was removed from each. Complete transverse muscle sections were stained with Oil Red O (detection of lipids) and immunocytochemistry was performed using an antibody to collagen I. Slides were analysed and paired t -Tests revealed the smallest littermate contained a significantly higher proportion of fat deposits and collagen I content compared with the largest littermate. Recent postnatal studies showing elevated levels of intramuscular lipids and low scores for meat tenderness in the smallest littermate corroborate our investigations. It can be concluded that the differences seen in connective tissue elements have a fetal origin that may continue postnatally. [source]


Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 3 2002
Stephen D. Waldman
Abstract Successful joint resurfacing by tissue-engineered cartilage has been limited, in part, by an inability to secure the implant to bone. To overcome this, we have developed the methodology to form a cartilage implant in vitro consisting of a layer of cartilagenous tissue overlying a porous, biodegradable calcium polyphosphate (CPP) substrate. As bone will grow into the CPP after implantation, it will result in anchorage of the cartilage. In this study, the cartilagenous tissue formed in vitro after 8 weeks in culture was characterized and compared to native articular cartilage. Light microscopic examination of histological sections showed that there was a continuous layer of cartilagenous tissue on, and integrated with the subsurface of, the CPP substrate. The in vitro -formed tissue achieved a similar thickness to native articular cartilage (mean ± SEM: in vitro = 0.94 ± 0.03 mm; ex vivo = 1.03 ± 0.01 mm). The cells in the in vitro -formed tissue synthesized large proteoglycans (Kav ± SEM: in vitro = 0.27 ± 0.01; ex vivo = 0.27 ± 0.01) and type II collagen similar to the chondrocytes in the ex-vivo cartilage. The in vitro -formed tissue had a similar amount of proteoglycan (GAG ,g/mg dry wt.: in vitro = 198 ± 10; ex vivo = 201 ± 13) but less collagen than the native cartilage (hydroxyproline ,g/mg dry wt.: in vitro = 21 ± 1; ex vivo = 70 ± 8). The in vitro -formed tissue had only about 3% of the load-bearing capacity and stiffness of the native articular cartilage, determined from unconfined mechanical compression testing. Although low, this was within the range of properties reported by others for tissue-engineered cartilage. It is possible that the limited load-bearing capacity is the result of the low collagen content and further studies are required to identify the conditions that will increase collagen synthesis. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62:323,330, 2002 [source]


Effect of growth hormone on in vitro osteogenesis and gene expression of human osteoblastic cells is donor-age-dependent

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
Grasiele E. Crippa
Abstract It has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13,16 years old), young adults (18,35 years old), and adults (36,49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents. J. Cell. Biochem. 104: 369,376, 2008. © 2007 Wiley-Liss, Inc. [source]


Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2007
Yi-Chao Hsu
Abstract Background:, Anti-inflammation strategies are one of the proposed therapeutic approaches to hepatic fibrosis. Tetrandrine (C38H42O8N2, molecular weight: 622; Tet), an alkaloid isolated from the Chinese medicinal herb Stephania tetrandra, has been shown to exert anti-inflammatory activity in pulmonary diseases. The purpose of the present study was to investigate the in vitro and in vivo effects of Tet on hepatic fibrosis. Methods:, A cell line of rat hepatic stellate cells (HSC-T6) was stimulated with transforming growth factor-,1 (TGF-,1) or tumor necrosis factor-, (TNF-,). The inhibitory effects of Tet on the nuclear factor ,B (NF,B) signaling cascade and molecular markers including intercellular adhesion molecule-1 (ICAM-1) and ,-smooth muscle actin (,-SMA) secretion were assessed. Fibrosis was induced by dimethylnitrosamine (DMN) administration in rats for 4 weeks. Fibrotic rats were randomly assigned to one of the four groups: vehicle (0.7% carboxyl methyl cellulose, CMC), Tet (1 mg/kg), Tet (5 mg/kg), or silymarin (50 mg/kg), each given by gavage twice daily for 3 weeks starting after 1 week of DMN administration. At the end of the study, liver tissues were scored for fibrosis and analyzed for molecular markers of fibrosis. Results:, Tetrandrine (0.5,5.0 µmol/L) concentration-dependently inhibited NF,B transcriptional activity induced by TNF-,, including I,B, phosphorylation and mRNA expressions of ICAM-1 in HSC-T6 cells. In addition, Tet also inhibited TGF-,1-induced ,-SMA secretion and collagen deposition in HSC-T6 cells. Fibrosis scores of livers from DMN-treated rats with high-dose Tet (1.3 ± 0.3) were significantly reduced in comparison with DMN-treated rats receiving saline (2.0 ± 0.2). Hepatic collagen content of DMN rats was significantly reduced by either Tet or silymarin treatment. Double-staining results showed that ,-SMA- and NF,B-positive cells were decreased in the fibrotic livers by Tet and silymarin treatment. In addition, mRNA expression of ICAM-1, ,-SMA, and TGF-,1 was attenuated by Tet treatment. Moreover, levels of plasma aspartate aminotransferase and alanine aminotransferase activities were reduced by Tet and silymarin treatment. Conclusion:, Tetrandrine exerts antifibrotic effects in both HSC-T6 cells and in rats with DMN-induced fibrosis. [source]


The effects of ACE inhibitor therapy on left ventricular myocardial mass and diastolic filling in previously untreated hypertensive patients: A Cine MRI study

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2001
U. Hoffmann MD
Abstract Cardiac remodeling in case of hypertension induces hypertrophy of myocytes and elevated collagen content and, subsequently, impaired diastolic filling of the left ventricle. The purpose of this prospective study was to evaluate changes of left ventricular (LV) myocardial mass, as well as diastolic filling properties, in hypertensive patients treated with the ACE inhibitor fosinopril. Sixteen hypertensive patients with echocardiographically documented LV hypertrophy and diastolic dysfunction received fosinopril (10,20 mg daily). Measurements of LV myocardial mass and properties of diastolic filling (peak filling fraction (PFF); peak filling rate (PFR)) were performed prior to medication, as well as after 3 and 6 months of therapy using cine magnetic resonance imaging (MRI). Ten healthy subjects served as a control group. LV myocardial mass (g/m2) decreased continuously within 3,6 months of follow-up by 32% (148 ± 40 vs. 120 ± 26 vs. 101 ± 22 g/m2; P < 0.0001/0.005). The extent of regression correlated to the severity of LV hypertrophy at baseline (r = 0.77; P < 0.004). Early diastolic filling increased significantly within 6 months of therapy (PFF (%): 36 ± 6 vs. 61 ± 7, P < 0.0001; PFR (mL/second): 211 ± 48 vs. 282 ± 48, P < 0.001). Cine MRI can be used to assess the time course of pharmacological effects on cardiac remodeling in the course of hypertension. ACE inhibitor therapy results in a significant reduction of LV mass within 3 months and is accompanied by a normalization of diastolic filling that is completed after 6 months. J. Magn. Reson. Imaging 2001;14:16,22. © 2001 Wiley-Liss, Inc. [source]


Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 11 2008
Rani Roy
Abstract Collagen glycated with ribose (250 mM) in solution (pre-glycation) and as a gel (post-glycation) was seeded with chondrocytes and the effects of glycation on chondrocyte matrix assembly in culture were determined. Pre-glycation enhanced GAG accumulation significantly over controls at both 2 and 4 weeks (p,<,0.05), although at both time points there were no statistical differences in cell number between pre-glycated and control gels. The increased proteoglycan accumulation was shown to be in part due to significantly increased GAG retention by the pre-glycated constructs (p,<,0.05). Total collagen content in these pre-glycated gels was also significantly higher than unglycated gels at 4 weeks (p,<,0.05). With post-glycation of collagen gels, chondrocyte number and GAG accumulation were all significantly lower than controls (p,<,0.05). Post-glycation also inhibited GAG retention by the constructs (p,<,0.05). Given these results, pre-glycation may be an improved processing method for collagen gels for tissue engineering techniques. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1434,1439, 2008 [source]


Pomegranate peel extract prevents liver fibrosis in biliary-obstructed rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2007
Hale Z. Toklu
ABSTRACT Punica granatum L. (pomegranate) is a widely used plant that has high nutritional value. The aim of this study was to assess the effect of chronic administration of pomegranate peel extract (PPE) on liver fibrosis induced by bile duct ligation (BDL) in rats. PPE (50 mg kg,1) or saline was administered orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage. Proinflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta) in the serum and anti-oxidant capacity (AOC) were measured in plasma samples. Samples of liver tissue were taken for measurement of hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemilumi-nescence assay. Serum AST, ALT, LDH and cytokines were elevated in the BDL group compared with the control group; this increase was significantly decreased by PPE treatment. Plasma AOC and hepatic GSH levels were significantly depressed by BDL but were increased back to control levels in the PPE-treated BDL group. Increases in tissue MDA levels and MPO activity due to BDL were reduced back to control levels by PPE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with PPE treatment. Thus, chronic PPE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function. It therefore seems likely that PPE, with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver from fibrosis and oxidative injury due to biliary obstruction. [source]


Melatonin protects against endosulfan-induced oxidative tissue damage in rats

JOURNAL OF PINEAL RESEARCH, Issue 4 2008
Gülden Z. Omurtag
Abstract:, Endosulfan is a chlorinated cyclodiene insecticide which induces oxidative stress. In this study, we investigated the possible protective effect of melatonin, an antioxidant agent, against endosulfan (Endo)-induced toxicity in rats. Wistar albino rats (n = 8) were administered endosulfan (22 mg/kg/day orally) followed by either saline (Endo group) or melatonin (10 mg/kg/day, Endo + Mel group) for 5 days. In other rats, saline (control group) or melatonin (10 mg/kg/day, Mel group) was injected for 5 days, following corn oil administration (vehicle of endosulfan). Measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content were performed in liver and kidney. Furthermore, aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine levels, lactate dehydrogenase (LDH) activity were measured in the serum samples, while tumor necrosis factor-, (TNF-,), interleukin-, (IL-,) and total antioxidant capacity (AOC) were assayed in plasma samples. Endosulfan administration caused a significant decrease in tissue GSH and plasma AOC, which was accompanied with significant rises in tissue MDA and collagen levels and MPO activity. Moreover, the proinflammatory mediators (TNF-, and IL-,), LDH activity, AST, ALT, creatinine and BUN levels were significantly elevated in the endosulfan-treated rats. On the other hand, melatonin treatment reversed all these biochemical alterations induced by endosulfan. Our results suggest that oxidative mechanisms play an important role in endosulfan-induced tissue damage and melatonin, by inhibiting neutrophil infiltration, balancing oxidant,antioxidant status and regulating the generation of inflammatory mediators, ameliorates oxidative organ injury as a result of endosulfan toxicity. [source]


Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats

JOURNAL OF PINEAL RESEARCH, Issue 2 2004
Veysel Tahan
Abstract:, Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice. [source]


Influence of Starvation on Flesh Quality of Farmed Dentex, Dentex dentex

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2010
María Dolores Suárez
Dentex (mean initial weight 324 ± 5 g) from a fish farm were divided into two groups (control and fasted). At the end of experimental period (5 wk), dentex were sampled for gross muscle composition and quality analysis. For post mortem muscle analysis, after death, fish were kept in a cold chamber at 4 C, and muscle samples were taken at 4 (prerigor state), 24 (rigor state), and 82 (postrigor state) h after slaughtering. In each fish, textural and biochemical parameters were determined. During starvation, there was a drastic reduction in muscle lipid content and a relative increase of the proteolysis. There were little qualitative changes in the fatty-acid profile of muscle lipids, although a significant increase in n3/n6 ratio in the starved dentex was detected. Starved fish also showed higher muscle firmness, but no differences in pH and water holding capacity were observed. Total and myofibrillar protein and collagen content increased significantly in starved dentex. Firmness during post mortem storage was significantly higher in starved fish, compared with control group. Preslaughtering feeding status showed decisive influence on the evolution dentex muscle quality parameters during cold storage. [source]


The influence of endothelial cells on the ECM composition of 3D engineered cardiovascular constructs,

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 1 2009
Rolf A. A. Pullens
Abstract Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach to develop viable alternatives for autologous vascular grafts. Development of a functional, adherent, shear resisting endothelial cell (EC) layer is one of the major issues limiting the successful application of these tissue engineered grafts. The goal of the present study was to create a confluent EC layer on a rectangular 3D cardiovascular construct using human venous cells and to determine the influence of this layer on the extracellular matrix composition and mechanical properties of the constructs. Rectangular cardiovascular constructs were created by seeding myofibroblasts (MFs) on poly(glycolic acid) poly-4-hydroxybutyrate scaffolds using fibrin gel. After 3 or 4 weeks, ECs were seeded and co-cultured using EGM-2 medium for 2 or 1 week, respectively. A confluent EC layer could be created and maintained for up to 2 weeks. The EGM-2 medium lowered the collagen production by MFs, resulting in weaker constructs, especially in the 2 week cultured constructs. Co-culturing with ECs slightly reduced the collagen content, but had no additional affect on the mechanical performance. A confluent endothelial layer was created on 3D human cardiovascular constructs. The layer was co-cultured for 1 and 2 weeks. Although, the collagen production of the MFs was slightly lowered, co-culturing ECs for 1 week results in constructs with good mechanical properties and a confluent EC layer. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Antifibrogenic effects of tamoxifen in a rat model of periportal hepatic fibrosis

LIVER INTERNATIONAL, Issue 2 2009
Soo Hyung Ryu
Abstract Backgrounds/Aims: It has been reported that tamoxifen may affect hepatoma cell growth in vitro by suppressing transforming growth factor ,-1 (TGF-,1) expression, suggesting that tamoxifen might also retard fibrogenesis. Thus, we examined whether tamoxifen might suppress TGF-,1 expression and consequently inhibit the process of hepatic fibrosis in vivo. Methods: To induce periportal hepatic fibrosis, 50 male adult Sprague,Dawley rats were injected with 0.62 mmol/kg of allyl alcohol, intraperitoneally, twice a week for 8 weeks. Hepatic fibrosis scores, intrahepatic collagen levels and plasma TGF-,1 expression levels were evaluated in three groups of 10 rats orally administered tamoxifen at 1, 5 and 10 mg/kg, respectively, and in 20 controls. Messenger RNAs (mRNAs) encoding TGF-,1 and TGF-, receptors in liver tissue were semiquantified using reverse transcriptase polymerase chain reaction. Results: Hepatic fibrosis scores decreased progressively as the dose of tamoxifen increased, resulting in a significant change in rats treated with tamoxifen at 10 mg/kg compared with controls (P=0.018). Intrahepatic collagen content was significantly less in the group treated with tamoxifen at 10 mg/kg compared with the control (P=0.045). Plasma TGF-,1 levels were also significantly lower in rats treated with tamoxifen at 10 mg/kg compared with controls (P=0.007). All three concentrations of tamoxifen tested decreased the expression levels of hepatic TGF-,1 mRNA and type I TGF-, receptor (TGF-, RI) mRNA to similar extents. Conclusions: Tamoxifen seems to inhibit the process of hepatic fibrosis dose-dependently by suppressing the transcription of TGF-,1 and TGF-, RI in an experimental model of periportal hepatic fibrosis. [source]


Clinical review: Healing in gastrointestinal anastomoses, Part I

MICROSURGERY, Issue 3 2006
Sarah K. Thompson M.D.
Gastrointestinal healing is a topic rarely reviewed in the literature, yet it is of paramount importance to the surgeon. Failure of anastomotic healing may lead to life-threatening complications, additional surgical procedures, increased length of stay, increased cost, long-term disability, and reduced quality of life for the patient. The goal of this article is to review the biological response to wounded tissue, to outline discrete differences between skin and gastrointestinal healing, to discuss local and systemic factors important to gastrointestinal healing, and to compare methods of measuring collagen content and strength of the newly formed anastomosis. Part II of this review will focus on techniques and therapies available to optimize anastomotic healing. © 2006 Wiley-Liss, Inc. Microsurgery, 2006. [source]


Evaluation by scanning acoustic microscopy (SAM) on glomerular lesion of IgA nephropathy

NEPHROLOGY, Issue 2001
H Kiyomoto
IgA nephropathy (IgAN) is known to commonly cause of end-stage renal failure in Japan. The glomerular lesions of IgAN have histological variations. The determination of prognosis and therapeutic strategy should be carefully done by experts because morphological information from renal biopsies using ordinary optical microscopy is usually qualitative and subjective. Moreover, the histological items for the evaluation of glomerular lesions seems to be unsatisfactory for expression of the disease condition of IgAN. The beneficial properties of scanning acoustic microscopy (SAM) include not only observation of microstructure but also quantitative measurement of acoustic propagation speed (APS), indicating the tissue elasticity. In the present study we compared the APS of glomeruli with the pathological scores that were determined by ordinary light microscopy. We used stocked human renal biopsy specimens diagnosed as IgAN (n = 12) and normal/minimal changes (n = 5). All samples were taken by renal biopsy in Kagawa Medical University Hospital during 1997,2000 under informed consent of the patients. The obtained renal tissue were immersed in 10% formalin and embedded in paraffin. A fixed specimen was consecutively cut into 4 ,m slices. One of the deparaffinized 4 ,m-specimens was directly utilized for SAM without any staining, and the others were stained with haematoxylin-eosin and Masson Trichrome for counting cell number and evaluation of collagen accumulation. For the measurement of glomerular APS, the sample line was set on the equator of the glomerulus and then scanning of the X,Z axis was carried out to obtain the interference fringes that were analysed with a computer imaging software in order to calculate the APS. In light microscopic study, pathological scores were evaluated semiquantitatively by two independent investigators who were unaware of the sample number. Glomerular lesions were scored into five grades and glomerular cell number was also counted in individual glomerulus. The computer-assisted imaging analyser Win ROOF (Mitani, Fukui, Japan) was also used for the determination of glomerular collagen content in specimens stained by Masson Trichrome. A two-dimensional image (C-mode scanning) of SAM enabled imaging of glomerulus in renal biopsy specimen compatible with findings of ordinary light microscopy without staining dye. The glomerular APS in IgAN was significantly higher than in normal/minimal changes. This alteration of glomerular APS in IgAN was positively correlated to both semiquantitative pathological scores and glomerular collagen content determined by light microscopy. However, the cell number of glomelurus did not change between IgAN and normal/minimal change. As a result, we conclude that the glomerular lesion, especially matrix expansion in IgAN, was comparable with the absolute value among specimens. Therefore, it is suggested that SAM method is a novel and useful technique for quantitative evaluation of glomerular lesion in IgAN. [source]


Carthamus tinctorius flower extract prevents H2O2 -induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells

PHYTOTHERAPY RESEARCH, Issue 7 2010
Eun Mi Choi
Abstract The flowers of Carthamus tinctorius L. (Compositae) have been widely used for enhancing blood circulation and postmenopausal disorder in women. In the present study, the potential protective effects of C. tinctorius flower extract (CFE) against reactive oxygen species (ROS) induced osteoblast dysfunction were investigated using osteoblastic MC3T3-E1 cells. The osteoblast function was assessed by measuring alkaline phosphatase activity, collagen content, calcium deposition, and RANKL production, and the oxidative status was assessed by measuring intracellular lipid peroxidation, and protein oxidation in osteoblastic MC3T3-E1 cells. A significant reduction in the alkaline phosphatase activity, collagen, and calcium deposition and an increase in the production of receptor activator of nuclear factor-kB ligand (RANKL) were observed after 0.3,mM H2O2 addition. The H2O2 -induced alterations were prevented by pre-incubating the osteoblasts with 2,10,,g/ml CFE for 48,h. When the oxidative stress was induced by H2O2, the increased production of protein carbonyl and malondialdehyde was also reduced at the same CFE concentration. These results demonstrate that C. tinctorius flower can act as a biological antioxidant in a cell culture experimental model and protect osteoblasts from oxidative stress-induced toxicity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Wound healing properties of Hylocereus undatus on diabetic rats

PHYTOTHERAPY RESEARCH, Issue 8 2005
R. M. Perez G.
Abstract Aqueous extracts of leaves, rind, fruit pulp and flowers of Hylocereus undatus were studied for their wound healing properties. Wound healing effects were studied on incision (skin breaking strength), excision (percent wound contraction) and the nature of wound granulation tissues, which were removed on day 7 and the collagen, hexosamine, total proteins and DNA contents were determined, in addition to the rates of wound contraction and the period of epithelialization. In streptozotocin diabetic rats, where healing is delayed, topical applications of H. undatus produced increases in hydroxyproline, tensile strength, total proteins, DNA collagen content and better epithelization thereby facilitating healing. H. undatus had no hypoglycemic activity. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Viscoelastic and Histologic Properties in Scarred Rabbit Vocal Folds After Mesenchymal Stem Cell Injection,

THE LARYNGOSCOPE, Issue 7 2006
S Hertegĺrd MD
Abstract Objective/Hypothesis: The aim of this study was to analyze the short-term viscoelastic and histologic properties of scarred rabbit vocal folds after injection of human mesenchymal stem cells (MSC) as well as the degree of MSC survival. Because MSCs are antiinflammatory and regenerate mesenchymal tissues, can MSC injection reduce vocal fold scarring after injury? Study Design: Twelve vocal folds from 10 New Zealand rabbits were scarred by a localized resection and injected with human MSC or saline. Eight vocal folds were left as controls. Material and Methods: After 4 weeks, 10 larynges were stained for histology and evaluation of the lamina propria thickness. Collagen type I content was analyzed from six rabbits. MSC survival was analyzed by fluorescent in situ hybridization staining from three rabbits. Viscoelasticity for 10 vocal folds was analyzed in a parallel-plate rheometer. Results: The rheometry on fresh-frozen samples showed decreased dynamic viscosity and lower elastic modulus (P < .01) in the scarred samples injected with MSC as compared with the untreated scarred group. Normal controls had lower dynamic viscosity and elastic modulus as compared with the scarred untreated and treated vocal folds (P < .01). Histologic analysis showed a higher content of collagen type 1 in the scarred samples as compared with the normal vocal folds and with the scarred folds treated with MSC. MSCs remained in all samples analyzed. Conclusions: The treated scarred vocal folds showed persistent MSC. Injection of scarred rabbit vocal folds with MSC rendered improved viscoelastic parameters and less signs of scarring expressed as collagen content in comparison to the untreated scarred vocal folds. [source]


Collagen content and architecture of the pectoralis muscle in male chicks and broilers reared under various nutritional conditions

ANIMAL SCIENCE JOURNAL, Issue 2 2010
Chamali DAS
ABSTRACT Varying chicken growth rates were induced with different nutritional regimes, and the collagen content and architecture of M. pectoralis (PT) were compared among 21-day-old chicks and broilers at 80 or 95 days of age. The percentage of muscle weight to live weight was higher in rapid growing chicks (8.4%) than slow growing chicks (6.3%). The 80-day-old broilers engaged in compensatory growth after the early slow growth period producing PT muscle at 11% of live weight. The 80- and 95-day-old chicks with restricted late growth after an early rapid growth period showed PT weight at 8% and 9% of live weight, respectively. Collagen content of the PT muscle markedly decreased from the chicks to the broilers. The collagen concentration was higher in the late-growth restricted broilers (1.67,1.88 mg/g) than the compensatory growth broilers (1.01,1.10 mg/g). Collagen concentration did not differ between the rapid and slow growing chicks (2.72 and 2.94 mg/g). Scanning electron micrographs showed thick and thin perimysia, and honeycomb endomysia. In the perimysia, a stack layer of collagen platelets and a reticular layer of collagen fiber cords were distinguished and collagen baskets of adipocytes were observed. The perimysial collagen fibers became thicker during growth of the chicks to broilers. However, in the late-growth restricted broilers, the perimysial collagen fibers seemed to have retarded development compared with the compensatory growth birds. The PT muscle of chickens develops optimally when body growth is enhanced. The PT muscle of the compensatory growth broilers had improved collagen architecture regardless of the marked decrease in collagen content. [source]


Pharmacodynamics of pentoxifylline and/or praziquantel in murine schistosomiasis mansoni,

APMIS, Issue 3 2007
NAGLAA EL-LAKKANY
Pentoxifylline (PTX) was proved to exert both anti-inflammatory and anti-fibrotic effects, and was used therapeutically in this experimental model to investigate its role alone or with praziquantel (PZQ) in Schistosoma mansoni -infected mice, and to explore its impact on the tissue expression of transforming growth factor-,1 (TGF-,1). S. mansoni -infected mice were divided into seven groups: Control untreated (I), treated with curative dose of PZQ, 500 mg/kg/day for 2 consecutive days (II), or subcurative dose, 100 mg/kg/day for 2 consecutive days (III), treated with PTX (10 mg/kg/day for 5 days/wk) alone for 4 weeks (IV) or in addition to subcurative dose of PZQ (V), and treated with PTX alone for 8 weeks (VI) or in addition to subcurative dose of PZQ (VII). All animals were killed 10 weeks post infection. Parasitological assessment of worm burden, tissue egg load and oogram pattern was carried out. The degree of granulomatous fibrosis and eosinophilic cell population was quantified in Sirius-red-stained sections and tissue transforming growth factor beta-1 expression was estimated immunohistochemically. Serum ALAT and GGT, as well as hepatic content of reduced GSH, were measured. The results revealed the highest percent of worm reduction and dead ova in groups (II) and (VII) accompanied by significant diminution in granulomatous parameters, collagen content and TGF-,1 tissue expression. Moreover, treatments with PTX and/or PZQ ameliorated the liver functions. In conclusion, prolonged treatment with PTX has a potent anti-fibrogenic role especially when used in the early stages of infection, with limited toxic effects on schistosome worms and eggs. Thus, PTX can be used as an adjuvant therapeutic tool with anti-helminthic drugs in the treatment of human schistosomiasis. [source]


Intracellular Na+ and Ca2+ modulation increases the tensile properties of developing engineered articular cartilage

ARTHRITIS & RHEUMATISM, Issue 4 2010
Roman M. Natoli
Objective Significant collagen content and tensile properties are difficult to achieve in tissue-engineered articular cartilage. The aim of this study was to investigate whether treating developing tissue-engineered cartilage constructs with modulators of intracellular Na+ or Ca2+ could increase collagen concentration and construct tensile properties. Methods Inhibitors of Na+ ion transporters and stimulators of intracellular Ca2+ were investigated for their ability to affect articular cartilage development in a scaffoldless, 3-dimensional chondrocyte culture. Using a systematic approach, we applied ouabain (Na+/K+ -ATPase inhibitor), bumetanide (Na+/K+/2Cl, tritransporter inhibitor), histamine (cAMP activator), and ionomycin (a Ca2+ ionophore) to tissue-engineered constructs for 1 hour daily on days 10,14 of culture and examined the constructs at 2 weeks or 4 weeks. The gross morphology, biochemical content, and compressive and tensile mechanical properties of the constructs were assayed. Results The results of these experiments showed that 20 ,M ouabain, 0.3 ,M ionomycin, or their combination increased the tensile modulus by 40,95% compared with untreated controls and resulted in an increased amount of collagen normalized to construct wet weight. In constructs exposed to ouabain, the increased percentage of collagen per construct wet weight was secondary to decreased glycosaminoglycan production on a per-cell basis. Treatment with 20 ,M ouabain also increased the ultimate tensile strength of neo-tissue by 56,86% at 4 weeks. Other construct properties, such as construct growth and type I collagen production, were affected differently by Na+ modulation with ouabain versus Ca2+ modulation with ionomycin. Conclusion These data are the first to show that treatments known to alter intracellular ion concentrations are a viable method for increasing the mechanical properties of engineered articular cartilage and identifying potentially important relationships to hydrostatic pressure mechanotransduction. Ouabain and ionomycin may be useful pharmacologic agents for increasing tensile integrity and directing construct maturation. [source]


Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen,induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

ARTHRITIS & RHEUMATISM, Issue 12 2009
K. Blumbach
Objective Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril,associated proteins type IX collagen and cartilage oligomeric matrix protein (COMP) during cartilage matrix formation. Methods Primary chondrocytes from mice deficient in type IX collagen and COMP (double-deficient) were cultured in monolayer or alginate beads. Anchorage of matrix proteins, proteoglycan and collagen content, collagen crosslinks, matrix metalloproteinase activity, and mechanical properties of the matrix were measured. Electron microscopy was used to study the formation of fibrillar structures. Results In cartilage lacking both type IX collagen and COMP, matrilin 3 showed decreased matrix anchorage. Less matrilin 3 was deposited in the matrix of double-deficient chondrocytes, while larger amounts were secreted into the medium. Proteoglycans were less well retained in the matrix formed in alginate cultures, while collagen deposition was not significantly affected. Electron microscopy revealed similar cartilage collagen fibril diameters in the cultures of double-deficient and wild-type chondrocytes. In contrast, a larger fibril diameter was observed in the matrix of chondrocytes deficient in only type IX collagen. Conclusion Our results show that type IX collagen and COMP are involved in matrix assembly by mediating the anchorage and regulating the distribution of other matrix macromolecules such as proteoglycans and matrilins and have counteracting effects on collagen fibril growth. Loss of type IX collagen and COMP leads to matrix aberrations that may make cartilage more susceptible to degeneration. [source]


Loss of peroxisome proliferator,activated receptor , in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis

ARTHRITIS & RHEUMATISM, Issue 9 2009
Mohit Kapoor
Objective There is increasing evidence that the transcription factor peroxisome proliferator,activated receptor , (PPAR,) plays an important role in controlling cell differentiation, and that PPAR, ligands can modify inflammatory and fibrotic responses. The aim of the present study was to examine the role of PPAR, in a mouse model of skin scleroderma, in which mice bearing a fibroblast-specific deletion of PPAR, were used. Methods Cutaneous sclerosis was induced by subcutaneous injection of bleomycin, while untreated control groups were injected with phosphate buffered saline. Mice bearing a fibroblast-specific deletion of PPAR, were investigated for changes in dermal thickness, inflammation, collagen content, and the number of ,-smooth muscle actin,positive cells. The quantity of the collagen-specific amino acid hydroxyproline was also measured. In addition, the effect of PPAR, deletion on transforming growth factor ,1 (TGF,1) signaling in the fibroblasts was investigated. Results Bleomycin treatment induced marked cutaneous thickening and fibrosis in all treated mice. Deletion of PPAR, resulted in enhanced susceptibility to bleomycin-induced skin fibrosis, as indicated by increases in all measures of skin fibrosis and enhanced sensitivity of fibroblasts to TGF,1 in PPAR-deficient mice. Conclusion These results indicate that PPAR, suppresses fibrogenesis. Specific agonists of PPAR, may therefore alleviate the extent of the development of cutaneous sclerosis. [source]


,-melanocyte,stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma?

ARTHRITIS & RHEUMATISM, Issue 2 2009
Agatha Kokot
Objective Recently, we found that human dermal fibroblasts (HDFs) express melanocortin 1 receptors (MC-1R) that bind ,-melanocyte,stimulating hormone (,-MSH). In search of novel therapies for scleroderma (systemic sclerosis [SSc]), we used the bleomycin (BLM) model to investigate the effects of ,-MSH on collagen synthesis and fibrosis. Methods Collagen expression in HDFs was determined by real-time reverse transcription,polymerase chain reaction (RT-PCR) and Western blot analyses. Signal transduction studies included pharmacologic blockade, immunofluorescence analysis, Western blotting, and reporter,promoter assays. Oxidative stress was measured by fluorescence-activated cell sorter analysis, and anti,oxidative enzyme levels were determined by real-time RT-PCR and Western blot analyses. The effect of ,-MSH in the BLM mouse model of scleroderma was assessed by histologic, immunohistochemical, real-time RT-PCR, and protein analyses. Expression of MC-1R and pro-opiomelanocortin (POMC) in skin and HDF samples from patients with SSc was determined by RT-PCR and compared with that in samples from normal controls. Results Treatment with ,-MSH (and related peptides) suppressed BLM-induced expression of type I and type III collagen in HDFs, and this effect was cAMP-dependent. Neither BLM nor ,-MSH altered Smad signaling, but antioxidants inhibited BLM-induced collagen expression in vitro. In addition, ,-MSH suppressed BLM-induced oxidative stress and enhanced the expression of superoxide dismutase 2 (SOD2) and heme oxygenase 1 (HO-1). In the BLM mouse model, ,-MSH reduced skin fibrosis and collagen content and increased tissue levels of SOD2 and HO-1. In skin and HDFs from patients with SSc, both MC-1R and POMC messenger RNAs were detected, but there were no differences compared with healthy controls. Conclusion Alpha-melanocyte,stimulating hormone and related peptides that exert their effects via MC-1R may provide a novel antifibrogenic therapeutic tool for the treatment of fibrotic diseases such as scleroderma. [source]