Collagen Binding (collagen + binding)

Distribution by Scientific Domains


Selected Abstracts


Homozygous type 2N R854W von Willebrand factor is poorly secreted and causes a severe von Willebrand disease phenotype

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 9 2010
G. CASTAMAN
Summary.,Background:,von Willebrand disease (VWD) type Normandy (VWD 2N) is caused by mutations at the factor (F)VIII-binding site of von Willebrand factor (VWF), located in the D,and D3 domains on the N-terminus of mature VWF. The R854Q mutation is the most frequent cause of this phenotype. Objectives:,We report the characterization of a homozygous VWD 2N mutation, R854W, detected in a patient with a severe VWD phenotype. Methods:,The plasma VWF phenotype was studied, transient expression of recombinant mutant full-length VWF in 293 EBNA cells was performed, and the results were compared with those obtained with wild-type (WT) VWF. Furthermore, expression was also examined in HEK293 cells, which form Weibel,Palade body-like granules when transfected with WT VWF. Results:,The multimer analysis of plasma VWF showed the lack of the typical triplet structure, with the presence of the central band only, and a relative decrease in the high molecular mass multimers. Homozygous expression of recombinant R854W VWF resulted in normal amounts of cellular VWF, but with a severe reduction in secretion into the medium. Severe reductions in FVIII binding to R854W VWF, glycoprotein Ib binding activity and collagen binding of secreted W854 VWF was observed, and reproduced the phenotypic parameters of plasma VWF. In HEK293 cells, homozygous R854W VWF failed to form Weibel,Palade body-like granules. Conclusions:,Our results demonstrate that a homozygous R854W mutation in the D, domain of VWF induces impaired secretion and activity of the protein, thereby explaining the severe phenotype of the patient. [source]


Expression studies on a novel type 2B variant of the von Willebrand factor gene (R1308L) characterized by defective collagen binding

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2005
L. BARONCIANI
Summary., A novel mutation, R1308L (3923G > T) was present in the heterozygous state in five members of a family with type 2B von Willebrand disease (VWD) characterized by a full set of von Willebrand factor (VWF) multimers in plasma and by the absence of thrombocytopenia before and after desmopressin (DDAVP). The defect (R1308L) was located at the same amino acid position of one of the most common mutations associated with type 2B VWD (R1308C), which is characterized by the loss of high molecular weight VWF multimers (HMWM) in plasma and the occurrence of thrombocytopenia. To understand the mechanisms of this defect, the novel (R1308L) and ,common' (R1308C) mutations were expressed in COS-7 cells, either alone or, to mimic the patients' heterozygous state, together with wild-type VWF. R1308L recombinant VWF (rVWF) had a higher affinity for the platelet glycoprotein Ib, (GPIb,) receptor than wild-type rVWF, R1308C rVWF showing an even higher affinity. A novel finding was that both mutant rVWFs showed a similarly reduced binding to collagen type I and type III in comparison with wild-type rVWF. The latter finding suggests a more important role than recognized so far for the VWF A1 domain in VWF binding to collagen, which may contribute to the in vivo hemostatic defect associated with type 2B VWD. [source]


Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family

MOLECULAR MICROBIOLOGY, Issue 6 2003
Sreedhar R. Nallapareddy
Summary A collagen-binding adhesin of Enterococcus faecium, Acm, was identified. Acm shows 62% similarity to the Staphylococcus aureus collagen adhesin Cna over the entire protein and is more similar to Cna (60% and 75% similarity with Cna A and B domains respectively) than to the Enterococcus faecalis collagen-binding adhesin, Ace, which shares homology with Acm only in the A domain. Despite the detection of acm in 32 out of 32 E. faecium isolates, only 11 of these (all clinical isolates, including four vancomycin-resistant endocarditis isolates and seven other isolates) exhibited binding to collagen type I (CI). Although acm from three CI-binding vancomycin-resistant E. faecium clinical isolates showed 100% identity, analysis of acm genes and their promoter regions from six non-CI-binding strains identified deletions or mutations that introduced stop codons and/or IS elements within the gene or the promoter region in five out of six strains, suggesting that the presence of an intact functional acm gene is necessary for binding of E. faecium strains to CI. Recombinant Acm A domain showed specific and concentration-dependent binding to collagen, and this protein competed with E. faecium binding to immobilized CI. Consistent with the adherence phenotype and sequence data, probing with Acm-specific IgGs purified from anti-recombinant Acm A polyclonal rabbit serum confirmed the surface expression of Acm in three out of three collagen-binding clinical isolates of E. faecium tested, but in none of the strains with a non-functional pseudo acm gene. Introduction of a functional acm gene into two non-CI-binding natural acm mutant strains conferred a CI-binding phenotype, further confirming that native Acm is sufficient for the binding of E. faecium to CI. These results demonstrate that acm, which encodes a potential virulence factor, is functional only in certain infection-derived clinical isolates of E. faecium, and suggest that Acm is the primary adhesin responsible for the ability of E. faecium to bind collagen. [source]


Delivery of a Growth Factor Fusion Protein Having Collagen-Binding Activity to Wound Tissues

ARTIFICIAL ORGANS, Issue 2 2003
Tetsuya Ishikawa
Abstract: Recently, we established a collagen-binding growth factor consisting of epidermal growth factor and the fibronectin collagen-binding domain (FNCBD-EGF). FNCBD-EGF is a biologically active fusion protein that could stably bind to collagen materials, and exert its growth factor activity even after collagen binding. In this study, we investigated the concept that FNCBD moiety with high collagen affinity may enhance the effective local concentration of EGF at the site of administration in the following tissues: skin wounds, catheter-injured arteries, and hind limb muscles. In an animal model of impaired wound healing, application of FNCBD-EGF in combination with collagen gel induced granulation tissue formation in the wounds due to its sustained retention. In the injured artery, infused FNCBD-EGF remained bound to collagen exposed on the injured tissues even after blood circulation was restored. Injection of the fusion protein into the hind limbs revealed that our delivery system was effective for direct administration to muscular tissue. [source]


The in,uence of ,1 -acid glycoprotein on collagenase-3 activity in early rheumatoid arthritis

BIOMEDICAL CHROMATOGRAPHY, Issue 6 2003
J. Louise Haston
Abstract The concentration and glycosylation of ,1 -acid glycoprotein (AGP) alter signi,cantly during in,ammation. A de,nitive physiological role for AGP remains elusive and is the subject of extensive investigation. This study investigated the in,uence of AGP on the activity of collagenase-3, an important mediator of cartilage destruction in rheumatoid arthritis. AGP was isolated from normal and rheumatoid plasma. Fucosylation was determined by high pH anion-exchange chromatography; sialylation was assessed following enzymatic digest. Rheumatoid AGP displayed elevated fucosylation and sialylation compared with normal. The in,uence of each sample on collagenase-3 activity was measured ,uorometrically. AGP in,uenced collagenase-3 catalysis and collagen binding, with catalytic activity correlating with fucosylation. Rheumatoid AGP exhibited less ef,cient inhibition than normal plasma AGP. It is hypothesized that AGP within rheumatoid synovial ,uid may be inadequate to prevent excessive cartilage destruction and hence may exacerbate the disease process. Copyright © 2003 John Wiley & Sons, Ltd. [source]