COD M (cod + m)

Distribution by Scientific Domains

Kinds of COD M

  • kg cod m


  • Selected Abstracts


    Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2002
    Maria Alcina Pereira
    Abstract A molecular approach was used to evaluate the microbial diversity of bacteria and archaea in two expanded granular sludge bed (EGSB) reactors fed with increasing oleic acid loading rates up to 8 kg of chemical oxygen demand (COD) m,3 day,1 as the sole carbon source. One of the reactors was inoculated with granular sludge (RI) and the other with suspended sludge (RII). During operation, the sludge in both reactors was segregated in two layers: a bottom settled one and a top floating one. The composition of the bacterial community, based on 16S rDNA sequence diversity, was affected most during the oleate loading process in the two reactors. The archaeal consortium remained rather stable over operation in RI, whereas in RII the relative abundance of Methanosaeta -like organisms became gradually weaker, starting in the bottom layer. In the range of oleate loads evaluated, 6 kg of COD m,3 day,1 was found as the maximum value that could be applied to the system. A further increase to 8 kg of oleate-COD m,3 day,1 induced a maximal shift on the microbial structure of the sludges. At this time point, methanogenic acetoclastic activity was not detected and only very low methanogenic activity on H2/CO2 was exhibited by the sludges. [source]


    Aerobic granules for low-strength wastewater treatment: formation, structure, and microbial community

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 7 2009
    Shu-Guang Wang
    Abstract BACKGROUND: To validate the possibility of aerobic granulation at a lower organic loading rate (OLR) than 2 kg COD m,3 day,1 (GS 1) in a sequencing batch reactor (SBR), the formation, structure, and microbial community of granular sludge (GS) were investigated. RESULTS: The overall experimental process involved the following stages: acclimation, granulation, maturation, and stabilization. The optical microscopic showed the structural changes from fluffy activated sludge (AS) to GS and scanning electron microscope (SEM) examination revealed that GS 1 was irregular filamentous aggregates composed mainly of various filamentous species, while the aerobic granules cultivated at OLR 1.68,4.20 kg COD m,3 day,1 (GS 2) was mycelial pellets consisting of fungi and filamentous microorganisms. A Biolog Ecoplate analysis indicated that significant differences existed between the microbial community structure and the substrate's utilization of AS and different GS samples. CONCLUSION: GS 1 was achieved and different from GS 2 in the formation, structure, and microbial community. Aerobic granulation with low strength wastewater is of importance for the full-scale application of this technology. Copyright © 2009 Society of Chemical Industry [source]


    Development of a membrane-assisted hybrid bioreactor for ammonia and COD removal in wastewaters

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2005
    Vinka Oyanedel
    Abstract A new membrane-assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N-NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N-NH4+ m,3 d,1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m,3 d,1. Also, the concentration of ammonia in the effluent was low, 1 mg N-NH4+ dm,3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow-growing nitrifiers took place preferentially in the biofilm and the fast-growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g,1 protein d,1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g,1 VSS d,1. Copyright © 2004 Society of Chemical Industry [source]


    Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2002
    B Kasapgil Ince
    Abstract The performance of an upflow anaerobic filter (UAF) treating a chemical synthesis-based pharmaceutical wastewater was evaluated under various operating conditions. During start-up, the UAF was initially fed by glucose till an organic loading rate (OLR) of approximately 7.5,kg COD m,3 day,1 with a hydraulic retention time of 2.3 days. A soluble COD removal efficiency of 98% was achieved before the addition of the wastewater. Initially, the filter inertia was acclimatized to the wastewater by sequential feeding of 10% (w/v), 30% (w/v) and 70% (w/v) of the pre-aerated wastewater mixed with glucose followed by a 100% (w/v) pre-aerated wastewater. During the operation, the COD removal efficiency and methane yield decreased to 75% and 0.30,m3 CH4,kg,1 CODremoved respectively. As the UAF became accustomed to the pre-aerated wastewater, raw wastewater was fed in increasing ratios of 20% (w/v), 60% (w/v) and 80% (w/v) with the pre-aerated wastewater as the remaining part. During this stage of the operation, a COD removal efficiency in a range of 77,86% was achieved and the methane yield decreased to 0.24,m3 CH4,kg,1 CODremoved. Finally, 100% (w/v) raw wastewater was fed and a COD removal efficiency of 65% was achieved with a methane yield of 0.20,m3 CH4,kg,1 CODremoved. At the end of the operation, acetoclastic methanogenic activity was only measured in the bottom section of the UAF, this showed a 90% reduction in comparison with activity of inoculation sludge. Microscopic examinations revealed that rod-shaped methanogens remained as the dominant species whereas Methanosarcina -like species and filaments were present only in insignificant numbers along the UAF. © 2002 Society of Chemical Industry [source]


    Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2001
    Peng Dangcong
    Abstract Simultaneous organic carbon and nitrogen removal was studied in a sequencing batch reactor (SBR) fed with synthetic municipal wastewater and controlled at a low dissolved oxygen (DO) level (0.8,mg,dm,3). Experimental results over a long time (120 days) showed that the reactor achieved high treatment capacities (organic and nitrogen loading rates reached as high as 2.4,kg COD m,3 d,1 and 0.24,kg NH3 -N m3 d,1) and efficiencies (COD, NH3 -N and total nitrogen removal efficiencies were 95%, 99% and 75%). No filamentous bacteria were found in the sludge even though the reactor had been seeded with filamentous bulking sludge. Instead, granular sludge, which possessed high activity and good settleability, was formed. Furthermore, the sludge production rate under low DO was less than that under high DO. Significant benefits, such as low investment and less operating cost, will be obtained from the new process. © 2001 Society of Chemical Industry [source]


    Biological treatment of milk processing wastewater in a sequencing batch flexible fibre biofilm reactor

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009
    Mohamed Abdulgader
    Abstract Biological treatment of dairy wastewater was investigated using a laboratory scale aerobic sequencing batch flexible fibre biofilm reactor (SBFFBR). The SBFFBR system was modified from a typical sequencing batch reactor system by using eight flexible fibre bundles with a very high specific surface area, which served as support for microorganisms. The reactor was operated under different influent chemical oxygen demand (COD) concentrations (610, 2041 and 4382 mg l,1) and constant hydraulic retention times of 1.6 days. The results have shown successful applicability of the SBFFBR system to treat this dairy wastewater. High COD removal efficiencies between 89.7 and 97% were achieved at average organic loading rates of 0.4 and 2.74 kg COD m,3 d,1, respectively. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]