Coating Techniques (coating + techniques)

Distribution by Scientific Domains


Selected Abstracts


Fabrication and Characterization of Anode-Supported Tubular Solid-Oxide Fuel Cells by Slip Casting and Dip Coating Techniques

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2009
Lan Zhang
High-performance anode-supported tubular solid-oxide fuel cells (SOFCs) have been successfully developed and fabricated using slip casting, dip coating, and impregnation techniques. The effect of a dispersant and solid loading on the viscosity of the NiO/Y2O3,ZrO2 (NiO/YSZ) slurry is investigated in detail. The viscosity of the slurry was found to be minimum when the dispersant content was 0.6 wt% of NiO/YSZ. The effect of sintering temperature on the shrinkage and porosity of the anode tubes, densification of the electrolyte, and performance of the cell at different solid loadings is also investigated. A Ni/YSZ anode-supported tubular cell fabricated from the NiO/YSZ slurry with 65 wt% solid loading and sintered at 1380°C produced a peak power output of ,491 and ,376 mW/cm2 at 800°C in wet H2 and CH4, respectively. With the impregnation of Ce0.8Gd0.2O2 (GDC) nanoparticles, the peak power density increased to ,1104 and ,770 mW/cm2 at 800°C in wet H2 and CH4, respectively. GDC impregnation considerably enhances the electrochemical performance of the cell and significantly reduces the ohmic and polarization resistances of thin solid electrolyte cells. [source]


Interaction of Osteoblasts with Macroporous Scaffolds Made of PLLA/PCL Blends Modified with Collagen and Hydroxyapatite,

ADVANCED ENGINEERING MATERIALS, Issue 8 2009
Halil Murat Aydin
To mimic natural bone, a tissue engineering scaffold was developed that combines inorganic and organic components of natural bone, its pore diameter, and its interconnected structure. Collagen was coated onto a PLLA/PCL scaffold and hydroxyapatite particles were delivered throughout the polymer matrix much more easily than with other techniques thanks to the porosity-forming method of combining two porogens, namely, salt leaching and supercritical CO2 extraction. Compared with other coating techniques, this procedure can be performed readily and homogeneous 3D hydroxyapatite coating was achieved. [source]


Colours and Metallic Sheen in Beetle Shells , A Biomimetic Search for Material Structuring Principles Causing Light Interference,

ADVANCED ENGINEERING MATERIALS, Issue 4 2008
T. Lenau
Abstract Visual aesthetic has always played a vital role for the success of many products. This includes colours and glossiness and metal appearance which is often achieved using surface coatings. Present coating techniques do, however, have limitations. It is difficult to reach very bright and brilliant colours, colours tend to fade over time and many of the materials and coating technologies pollute and have other environmental problems. Beetles in nature have many of the desired properties: They have appealing brilliant colours and some even with metallic appearance. It is noticeable that the colours are long lasting as some of the beetles we have studied at the zoological museum are more than 200 years old and have colours and brightness as if they were still alive. Furthermore, the beetles in nature are part of sustainable ecosystems, which means that they are made from renewable materials that are broken down and recycled when the beetle dies. Beetles also possess another and very attractive property: Their metallic look originates from structures in organic materials which is both electrically and thermal insulating. The industrial perspective is to be able to manufacture products with attractive metallic surfaces that do not feel so cold to touch as their metallic counterparts and that do not represent an electrical shock hazard. [source]


Preparation and application of a novel environmentally friendly organic seed coating for rice

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2009
Defang Zeng
Abstract BACKGROUND: Traditional rice seed coating techniques involve the use of chemical pesticides, which can damage the seed in the process and cause possible physical and environmental damage. Increasing knowledge and concern about the traditional applications have brought new attention to the industry and the search for a novel coating agent that is effective, safe and environmentally friendly. A new type of organic rice seed coating agent was developed using liquid-based polymeric adhesives. By using chitosan as the main raw material, modified with sodium hydroxide and polymerised with plant growth regulators and other additives, the novel seed coating agent is a safer, cheaper and more environmentally friendly alternative. RESULTS: The novel seed coating agent significantly enhanced sprout growth over traditional agents. We found it has obvious biological advantages: it stimulates the seedling growth of rice, advances the growth of root, improves root activity and increases the crop yield in the germination test and field trial. Compared with the traditional rice seed coating agent, the crop yield of seeds coated by the novel seed coating agent was increased by 5%, and at 25% less cost. The fungal inhibition test of the novel seed coating agent and acute toxicity test on fish showed that it has an obvious fungal inhibitory effect and a higher safety index during usage and disposal. CONCLUSION: This result suggests that treating seeds with the novel seed coating agent has significant agricultural implications through the enhanced seed vigour as reflected in growth. It is efficient and effective, resulting in better seed and crop protection. The novel seed coating agent demonstrates unique characteristics with great economic and environmental benefits. Copyright © 2009 Society of Chemical Industry [source]