Coated Implants (coated + implant)

Distribution by Scientific Domains


Selected Abstracts


Cell proliferation and differentiation during fracture healing are influenced by locally applied IGF-I and TGF-,1: Comparison of two proliferation markers, PCNA and BrdU

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2003
B. Wildemann
Abstract Growth factors IGF-I and TGF-,1 are known to stimulate fracture healing. The purpose of this study was to investigate the role of locally applied IGF-I and TGF-,1 during the early phase of fracture healing (Days 5, 10, and 15 after fracture) on cellular processes like proliferation and differentiation in a rat model. Two different immunohistochemical markers were used to analyze cell proliferation: (1) injection of the thymidine analogue BrdU and subsequent immunohistochemical staining for BrdU-positive nuclei, and (2) the antibody against the "proliferating cell nuclear antigen" (PCNA). In comparison, both methods revealed similar results concerning the types of proliferating cells at the different time points and the two groups. Labeling indices of both methods showed very good correlation (e.g., rs: 0.887 and p < 0.001 at day 10 in the control group without growth factors). Comparison of the callus morphology and the proliferation rate showed differences during fracture healing due to the local application of IGF-I and TGF-,1 from coated implants. At Day 5 the callus of the group treated with growth factors displayed an earlier appearance of cartilage compared to the control group. This was accompanied by an onset of cell proliferation in chondrocytes. Likewise, at the later time points an enhanced maturation of the callus tissue and the proliferation pattern were detectable in the growth-factor group. These results indicate that local application of IGF-I and TGF-,1 accelerates early cellular processes during fracture healing. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 150,156, 2003 [source]


Increased bone formation around coated implants

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 8 2009
Bernd Stadlinger
Abstract Aim: We hypothesized that coating threaded, sandblasted acid-etched titanium implants with collagen and chondroitin sulphate (CS) increases bone formation and implant stability, compared with uncoated controls. Materials and Methods: Three different implant surface conditions were applied: (1) sandblasted acid-etched (control), (2) collagen/chondroitin sulphate (low-dose , CS1), (3) collagen/chondroitin sulphate (high-dose , CS2). Sixty 9.5 mm experimental implants were placed in the mandible of 20 minipigs. Bone,implant contact (BIC) and relative peri-implant bone-volume density (rBVD , relation to bone-volume density of the host bone) were assessed after 1 and 2 months of submerged healing. Implant stability was measured by resonance frequency analysis (RFA). Results: After 1 month, coated implants had significantly more BIC compared with controls (CS1: 68%, p<0.0001, CS2: 63%, p=0.009, control: 52%). The rBVD was lower for all surface conditions, compared with the hostbone. After 2 months, BIC increased for all surfaces. No significant differences were measured (CS1: 71%, p=0.016, CS2: 68%, p=0.67, control: 63%). The rBVD was increased for coated implants. RFA values were 71,77 at implantation, 67,73 after 1 month and 74,75 after 2 months. Differences in rBVD and RFA were not statistically significant. Conclusions: Data analysis suggests that collagen/CS has a positive influence on bone formation after 1 month of endosseous healing. [source]


Bone healing performance of electrophoretically deposited apatite,wollastonite/chitosan coating on titanium implants in rabbit tibiae

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 7 2009
Smriti Sharma
Abstract Bone healing of tibial defect in rabbit model was used to evaluate a composite coating of apatite,wollastonite/chitosan on titanium implant. This coating has been developed to overcome the shortcomings, such as implant loosening and lack of adherence, of uncoated titanium implant. An electrophoretic deposition technique was used to coat apatite,wollastonite/chitosan on titanium implants. The present study was designed to evaluate the bone response of coated as compared to uncoated titanium implants in an animal model. After an implantation period of 14 (group A), 21 (group B), 35 (group C) and 42 days (group D), the bone,implant interfaces and defect site healing was evaluated using radiography, scintigraphy, histopathology, fluorescence labeling and haematology. Radiography of defect sites treated with coated implants suggested expedited healing. Scintigraphy of coated implant sites indicated faster bone metabolism than uncoated implant sites. Histopathological examination and fluorescence labeling of bone from coated implant sites revealed higher osteoblastic activity and faster mineralization. Faster bone healing in the case of coated implant sites is attributed to higher cell adhesion on electrostatically charged chitosan surfaces and apatite,wollastonite-assisted mineralization at bone,implant interfaces. Haematological studies showed no significant differences in haemoglobin, total erythrocyte and leukocyte counts, done using one way-ANOVA, during the entire study period. Our results show that AW/chitosan-coated implants have the advantages of faster bone healing, increased mechanical strength and good bone,implant bonding. Copyright © 2009 John Wiley & Sons, Ltd. [source]