Coated Fabrics (coated + fabric)

Distribution by Scientific Domains


Selected Abstracts


A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles,

ADVANCED FUNCTIONAL MATERIALS, Issue 22 2008
Jan Zimmermann
Abstract Superhydrophobic textile fabrics are prepared by a simple, one-step gas phase coating procedure by which a layer of polymethylsilsesquioxane nanofilaments is grown onto the individual textile fibers. A total of 11 textile fabrics made from natural and man made fibers are successfully coated and their superhydrophobic properties evaluated by the water shedding angle technique. A thorough investigation of the commercially relevant poly(ethylene terephthalate) fabric reveals an unparalleled long-term water resistance and stability of the superhydrophobic effect. Because of the special surface geometry generated by the nanoscopic, fibrous coating on the microscopic, fibrous textiles, the coated fabric remains completely dry even after two months of full immersion in water and stays superhydrophobic even after continuous rubbing with a skin simulating friction partner under significant load. Furthermore, important textile parameters such as tensile strength, color, and haptics are unaffected by the silicone nanofilament coating. For the first time, an in-depth characterization of the wetting properties, beyond simple contact angle measurements, as well as a thorough evaluation of the most important textile parameters is performed on a superhydrophobic fabric, which reveals a true potential for application. [source]


Application of hydrophilic finished of synthetic fabrics coated with CMC/acrylic acid cured by electron beam irradiation in the removal of metal cations from aqueous solutions

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Sayeda M. Ibrahim
Abstract Modified textile fabrics were used to remove Cu+2 and Cr+3 ions from aqueous solutions. For this purpose, modified Nylon-6, polyester woven and knitted fabrics were prepared by coating the surface with a thin layer of aqueous solution of carboxymethyl cellulose (CMC) and acrylic acid (AAc) of thickness 25 ,m. Radiation crosslinking of the coated layer was carried out by electron beam irradiation with a constant dose of 30 kGy. Morphology of the coated fabrics was examined by scanning electron microscope (SEM) which indicated the compatibility between the coated layer and fabrics. Properties attributed to the hydrophilicity, especially water uptake and weight loss before and after several washing cycles were followed up. The effect of AAc concentration on the hydrophilic properties of the coated fabrics was studied. A considerable enhancement in water uptake has been attained on increasing AAc content in solution in case of nylon-6 followed by polyester woven followed by polyester knitted fabrics. The performances of the modified textile fabrics were evaluated for the recovery of Cu+2 and Cr+3 from aqueous solution. The metal ion absorption efficiency of the modified textile fabrics was measured using UV Spectrophotometer analysis and EDX. Parameters affecting the efficiency of these textile fabrics in the removal of metal ions from aqueous solution namely, concentration of AAc and the immersion time were studied. It was found that there was a marked increase in the recovery of metal ions on increasing both immersion time and concentration of AAc. This study evidences that the modified textile fabrics can be used for the purpose of removal of some heavy metals such as Cu and Cr. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
Aysun Cireli
Abstract In this study, flame retardancy properties of fabrics treated with phosphorous (P) doped and undoped SiO2 thin films were developed by sol,gel technique. As to this aim, P-doped and undoped SiO2 film were coated on cotton fabric from the solutions prepared from P, Si-based precursors, solvent, and chelating agent at low temperature in air using sol,gel technique. To determine solution characteristics, which affect thin film structure, turbidity, pH values, and rheological properties of the prepared solutions were measured using a turbidimeter, a pH meter, and a rheometer machines before coating process. The thermal, structural, and microstructural characterization of the coating were done using differential thermal analysis/thermograviometry, fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy. In addition, tensile strength, wash fastness, flame retandancy, and lightness properties of the coated fabrics were determined. To compensate the slight loss of tensile strength of samples, which occurred at the treated fabrics with P-doped Si-based solutions, the cotton fabrics were coated with polyurethane films during second step. In conclusion, the flame retardant cotton fabric with durability of washing as halogen-free without requiring after treatment with formaldehyde was fabricated using sol,gel processing for the first time. Moreover the cotton fabrics, which were treated with P-doped Si-based solutions and then coated with polyurethane at second step, still has got nonflammable property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2007
S. Mondal
Abstract This research paper presented a novel approach of developing excellent protection from ultraviolet (UV) radiation of cotton fabrics by means of water vapor permeable (WVP) coatings containing multiwall carbon nanotube (MWNT), a stable and strongly UV absorbing species. The WVP of MWNT containing UV protective coatings of the present development are formed from solution polymer of hydrophilic polyurethane (HPU). MWNTs were dispersed in HPU solution by functionalization of MWNT. The nanotube containing HPU coating shows excellent protection against UV radiation, with only 1 wt % of MWNT (calculated based on solid content of the polymer), a UV Protection Factor (UPF) of 174 and with 2.5 wt % of MWNT a UPF of 421 was obtained, which stated excellent protection (UPF ,50) according to the Australian/New Zealand standards. Scanning electron micrographs of coated fabrics surface showed a film like polymer coating, confirming the fabric surface was successfully coated by polyurethane. The coated fabrics would maintain very good water vapor permeability, hence confirmed the wearing comfort. Room temperature (20,23°C) range soft segment crystal melting of HPU enhances the permeability of coated fabrics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3370,3376, 2007 [source]