Home About us Contact | |||
Coastal Systems (coastal + system)
Selected AbstractsA mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño,Southern Oscillation since 1878 A.D.INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2005Ian D. Goodwin Abstract Coastal systems behave on timescales from days to centuries. Shelf and coastal wave climatological data from the Tasman Sea are only available for the past few decades. Hence, the records are too short to investigate inter- and multidecadal variability and their impact on coastal systems. A method is presented to hindcast monthly mid-shelf mean wave direction (MWD) for southeastern Australia, based on the monthly, trans-Tasman mean sea-level pressure (MSLP) difference between northern NSW (Yamba) and the north island of New Zealand (Auckland). The MSLP index is calibrated to instrumental (Waverider buoy) MWD data for the Sydney shelf and coast. Positive/negative trans-Tasman MSLP difference is significantly correlated to southerly/easterly Sydney MWD, and to long/short mean wave periods. The 124-year Sydney annual (MWD) time series displays multidecadal variability, and identifies a significant period of more southerly annual MWD during 1884 to 1914 than in the period since 1915. The Sydney MWD is significantly correlated to the Southern Oscillation Index (SOI). The correlation with the SOI is enhanced during periods when the Interdecadal Pacific Oscillation (IPO) is in its negative state and warm SST anomalies occur in the southwest Pacific region. The Sydney MWD was found to be associated with Pacific basin-wide climate fluctuations associated with the El Niño-Southern Oscillation (ENSO). Southerly/easterly Sydney MWD is correlated with low/high MSLP anomalies over New Zealand and the central Pacific Ocean. Southerly/easterly Sydney MWD is also correlated with cool/warm SST anomalies in the southwest Pacific, particularly in the eastern Coral Sea and Tasman Sea. Copyright © 2005 Royal Meteorological Society. [source] Coastal paleogeography and human land use at Tecolote Canyon, southern California, U.S.A.GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 2 2004René L. Vellanoweth A buried archaeological site at Tecolote Canyon provides an ideal case study for relating past human land use patterns to changes in coastal paleogeography. Postglacial sea level transgression, erosion, and other marine and fluvial processes form the context for examining two deeply buried archaeological components excavated at CA-SBA-72. Archaeological shellfish assemblages provide proxy data for evaluating the evolution of local marine environments. Pismo clams dominate shellfish assemblages dated to 5800 cal yr B.P., suggesting the presence of a broad and sandy, high-energy beach environment. At 5500 cal yr B.P., the almost exclusive use of California mussels by humans signals the development of rocky intertidal habitats. During the late Holocene, estuarine species dominate the marine mollusk assemblages at CA-SBA-72, reflecting the development of local estuarine conditions or trade with nearby Goleta Slough villages. The buried components at Tecolote Canyon appear to have served as temporary camps for shellfish harvesting and processing. While general changes in coastal paleogeography and human subsistence have been reconstructed for the Santa Barbara Coast, high resolution ecological data from Tecolote Canyon suggest that Native peoples also adapted to localized and shorter-term shifts in intertidal habitats, changes not evident in most larger or more disturbed surface sites in the region. Linking these changes with shifts in human land use patterns highlights the interaction between humans and a dynamic coastal system. These data demonstrate the importance of small, buried sites in understanding the full spectrum of human subsistence and settlement choices and local environmental change. © 2004 Wiley Periodicals, Inc. [source] Effects of Coastal Lighting on Foraging Behaviorof Beach MiceCONSERVATION BIOLOGY, Issue 5 2004BRITTANY L. BIRD comportamiento de forrajeo; iluminación artificial; polución por luz; ratones de playa (Peromyscus polionotus leucocephalus) Abstract:,Introduction of artificial light into wildlife habitat represents a rapidly expanding form of human encroachment, particularly in coastal systems. Light pollution alters the behavior of sea turtles during nesting; therefore, long-wavelength lights,low-pressure sodium vapor and bug lights,that minimize impacts on turtles are required for beach lighting in Florida (U.S.A.). We investigated the effects of these two kinds of lights on the foraging behavior of Santa Rosa beach mice ( Peromyscus polionotus leucocephalus). We compared patch use and giving-up densities of mice for experimental food patches established along a gradient of artificial light in the field. Mice exploited fewer food patches near both types of artificial light than in areas with little light and harvested fewer seeds within patches near bug lights. Our results show that artificial light affects the behavior of terrestrial species in coastal areas and that light pollution deserves greater consideration in conservation planning. Resumen:,La introducción de luz artificial al hábitat de vida silvestre representa una forma de intrusión humana que se expande rápidamente, particularmente en sistemas costeros. Durante la anidación, la polución por luz altera el comportamiento de tortugas marinas; por tanto, para la iluminación de playas en Florida (E. U. A) se requieren luces de longitud de onda larga , luces de vapor de sodio de baja presión y contra insectos , que minimizan impactos sobre las tortugas. Investigamos los efectos de estos dos tipos de luces sobre el comportamiento de forrajeo de ratones de playa de Santa Rosa ( Peromyscus polionotus leucocephalus). Comparamos el uso de parches y las densidades de rendición de ratones en parches alimenticios experimentales establecidos a lo largo de un gradiente de luz artificial en el campo. Los ratones utilizaron menos parches de forrajeo cercanos a ambos tipos de luz artificial que en áreas con poca iluminación y cosecharon menos semillas en parches cercanos a luces contra insectos. Nuestros resultados muestran que la luz artificial afecta el comportamiento de especies terrestres en áreas costeras y que la polución por luz merece mayor consideración en la planificación de la conservación. [source] Triggers for Late Twentieth Century Reform of Australian Coastal ManagementGEOGRAPHICAL RESEARCH, Issue 3 2000B. G. Thom This paper identifies four triggers that underpinned the late 20th century reform of coastal management in Australia. These have operated across federal, state and local levels of government. The triggers are global environmental change, sustainable development, integrated resource management, and community awareness of management issues and participation in decision making. This reform has been driven by international and national forces. A number of inquiries into coastal management in Australia culminated in the production of a national coastal policy in 1995. This has led to fundamental changes in coastal management and to the recognition of the inevitability of changes in coastal systems. Federal policies and programs are being translated into action at the state and local government levels through a variety of funding mechanisms and programs. These involve capacity building, a memorandum of understanding between all levels of government, an enhanced role for state advisory or co-ordinating bodies, and an increased role for public participation. [source] A mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño,Southern Oscillation since 1878 A.D.INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2005Ian D. Goodwin Abstract Coastal systems behave on timescales from days to centuries. Shelf and coastal wave climatological data from the Tasman Sea are only available for the past few decades. Hence, the records are too short to investigate inter- and multidecadal variability and their impact on coastal systems. A method is presented to hindcast monthly mid-shelf mean wave direction (MWD) for southeastern Australia, based on the monthly, trans-Tasman mean sea-level pressure (MSLP) difference between northern NSW (Yamba) and the north island of New Zealand (Auckland). The MSLP index is calibrated to instrumental (Waverider buoy) MWD data for the Sydney shelf and coast. Positive/negative trans-Tasman MSLP difference is significantly correlated to southerly/easterly Sydney MWD, and to long/short mean wave periods. The 124-year Sydney annual (MWD) time series displays multidecadal variability, and identifies a significant period of more southerly annual MWD during 1884 to 1914 than in the period since 1915. The Sydney MWD is significantly correlated to the Southern Oscillation Index (SOI). The correlation with the SOI is enhanced during periods when the Interdecadal Pacific Oscillation (IPO) is in its negative state and warm SST anomalies occur in the southwest Pacific region. The Sydney MWD was found to be associated with Pacific basin-wide climate fluctuations associated with the El Niño-Southern Oscillation (ENSO). Southerly/easterly Sydney MWD is correlated with low/high MSLP anomalies over New Zealand and the central Pacific Ocean. Southerly/easterly Sydney MWD is also correlated with cool/warm SST anomalies in the southwest Pacific, particularly in the eastern Coral Sea and Tasman Sea. Copyright © 2005 Royal Meteorological Society. [source] A commentary on coastal research in New Zealand universitiesNEW ZEALAND GEOGRAPHER, Issue 2 2008Paul S. Kench Abstract: , University research in coastal geomorphology, processes and management has made a major contribution to the fundamental understanding of coastal systems in New Zealand over the past 43 years. This article examines the growth in university-based coastal research since 1964 and discusses the geographical pattern and themes of this research. Data indicate a significant geographical concentration of research effort and focus on a narrow range of research themes. Underlying reasons for these characteristics of New Zealand coastal research are explored and challenges facing university based research are discussed. Such challenges can be overcome through a more coordinated research effort to realize the huge potential to undertake coastal science of national relevance and international significance. [source] Combining land cover mapping of coastal dunes with vegetation analysisAPPLIED VEGETATION SCIENCE, Issue 2 2005A. Acosta Abstract Question: Coastal dune systems are characterized by a natural mosaic that promotes species diversity. This heterogeneity often represents a severe problem for traditional mapping or ground survey techniques. The work presented here proposes to apply a very detailed CORINE land cover map as baseline information for plant community sampling and analysis in a coastal dune landscape. Location: Molise coast, Central Italy. Method: We analysed through an error matrix the coherence between land cover classes and vegetation types identified through a field survey. The CORINE land cover map (scale 1: 5000) of the Molise coast was used with the CORINE legend expanded to a fourth level of detail for natural and semi-natural areas. Vegetation data were collected following a random stratified sampling design using the CORINE land cover classes as strata. An error matrix was used to compare, on a category-by-category basis, the relationship between vegetation types (obtained by cluster analyses of sampling plots) and land cover classes of the same area. Results: The coincidence between both classification approaches is quite good. Only one land cover class shows a very weak agreement with its corresponding vegetation type; this result was interpreted as being related to human disturbance. Conclusions: Since it is based on a standard land cover classification, the proposal has a potential for application to most European coastal systems. This method could represent a first step in the environmental planning of coastal systems. [source] |