Covalent Linkage (covalent + linkage)

Distribution by Scientific Domains

Selected Abstracts

Covalent Linkage Mediates Communication between ACP and TE Domains in Modular Polyketide Synthases

CHEMBIOCHEM, Issue 6 2008
Lucky Tran
Abstract Polyketide natural products such as erythromycin A and epothilone are assembled on multienzyme polyketide synthases (PKSs), which consist of modular sets of protein domains. Within these type I systems, the fidelity of biosynthesis depends on the programmed interaction among the multiple domains within each module, centered around the acyl carrier protein (ACP). A detailed understanding of interdomain communication will therefore be vital for attempts to reprogram these pathways by genetic engineering. We report here that the interaction between a representative ACP domain and its downstream thioesterase (TE) is mediated largely by covalent tethering through a short "linker" region, with only a minor energetic contribution from protein,protein molecular recognition. This finding helps explain in part the empirical observation that TE domains can function out of their normal context in engineered assembly lines, and supports the view that overall PKS architecture may dictate at least a subset of interdomain interactions. [source]

Identification and quantification of in vitro adduct formation between protein reactive xenobiotics and a lysine-containing model peptide

Peter Reichardt
Abstract Formation of in vitro adducts between different classes of xenobiotics and the lysine-containing peptide Lys-Tyr was monitored by high-performance liquid chromatography and electrospray ionization mass spectrometry. The molecular structures of the main resulting products could be sensitively analyzed by mass spectrometry (flow injection analysis), enabling the detection of characteristic binding formations. Aldehydes such as formaldehyde, acetaldehyde, and benzaldehyde were shown to form stable linkages to lysine amino groups via Schiff bases. Other electrophilic substances (e.g., toluene-2,4-diisocyanate, 2,4-dinitro-1-fluorobenzene, 2,4,6-trinitrobenzene sulfonic acid, dansyl chloride, and phthalic acid anhydride) also formed covalent adducts with lysine residues. The reactivity of the compounds was quantified by measuring the amount of peptide that remained unchanged after incubation for a certain period with the xenobiotic. Although reactivity levels within this group of aldehydes varied only to a small extent, as would be expected, extreme differences were seen among the structurally heterogeneous group of nonaldehyde xenobiotics. These results support the hypothesis that simple chemical reactions may lead to the adduction of nucleophilic macromolecules such as peptides or proteins. Such reactions, in particular, Schiff base formation of aldehydes, have previously been shown to be capable of specifically interfering with costimulatory signaling on T cells. Our results suggest that electrophilic xenobiotics of other classes may also inherit the capacity to exert similar effects. Forming covalent linkage to peptides may represent a possible molecular mechanism of electrophilic xenobiotics in vivo, yielding immunotoxic effects. The model utilized in this study is appropriate for monitoring the adduction of xenobiotics to basic peptides and for analyzing the resulting molecular structures. © 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 29,36, 2003. [source]

Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications

Huan-Ping Zhou
Abstract Rare-earth upconversion nanoparticles (UCNPs) exhibit great potential in luminescent biolabels and other multifunctional probes; however, their applications are limited by their low water solubility and the lack of binding groups. To address these problems, a clean and flexible strategy to modify hydrophobic monodisperse UCNPs into hydrophilic ones that are capped with functional groups is developed. The modification process is implemented by direct oxidation of oleic acid ligands with ozone under specific conditions, where the oleic acid (OA) ligands on the surface of the UCNPs can be converted into azelaic acid ligands (HOOC(CH2)7COOH) or azelaic aldehyde HOOC(CH2)7CHO, as is revealed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) measurements. This oxidation process has no significant side-effects on the morphology, phase, composition, or luminescent properties of the UCNPs. Free carboxylic acid groups on the surface endow the UCNPs with good water solubility, while aldehyde groups at the surface provide binding sites for amino-containing molecules via Schiff-base condensation, such as 2-(4-aminophenylethylyl)-5-methoxy-2-(2-pyridyl)thiazole (MPTEA) and 2-aminoethanethiol hydrochloride (NH2CH2CH2SH·HCl, HEMA). A Ce4+ sensor is constructed based on the dual-emission arising from the different spectral responses of MPTEA and the UCNPs. Facilitated by the covalent linkage between the terminal aldehyde group on the UCNPs and the amino group in HEMA, a hybrid structure of UCNPs and Au NPs is fabricated. The effective coupling between the aldehyde group and the amino group suggests that these functionalized UCNPs have potential in combining other functional units for simultaneous biolabeling, or other optical applications. [source]

Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media,

I. García-Moreno
Abstract In the search for more efficient and photostable solid-state dye lasers, newly synthesized analogs of the borondipyrromethene (BODIPY) dye PM567, bearing the polymerizable methacryloyloxypropyl group at position 2 (PMoMA) or at positions 2 and 6 (PDiMA), have been studied in the form of solid copolymers with methyl methacrylate (MMA). The parent dye PM567, as well as the model analogs bearing the acetoxypropyl group in the same positions, PMoAc and PDiAc, respectively, have been also studied both in liquid solvents and in solid poly(MMA) (PMMA) solution. Although in liquid solution PMoAc and PDiAc have the same photophysical properties as PM567, PDiAc exhibited a photostability up to 10 times higher than that of PM567 in ethanol under 310,nm-irradiation. The possible stabilization factors of PDiAc have been analyzed and discussed on the basis of the redox potentials, the ability for singlet molecular oxygen [O2(1,g)] generation, the reactivity with O2(1,g), and quantum mechanical calculations. Both PMoAc and PDiAc, pumped transversally at 532,nm, lased in liquid solution with a high (up to 58,%), near solvent-independent efficiency. This enhanced photostabilization has been also observed in solid polymeric and copolymeric media. While the solid solution of the model dye PDiAc in PMMA showed a lasing efficiency of 33,%, with a decrease in the laser output of ca.,50,% after 60,000 pump pulses (10,Hz repetition rate) in the same position of the sample, the solid copolymer with the double bonded chromophore, COP(PDiMA-MMA), showed lasing efficiencies of up to 37,%, and no sign of degradation in the laser output after 100,000 similar pump pulses. Even under the more demanding repetition rate of 30,Hz, the laser emission from this material remained at 67,% of its initial laser output after 400,000 pump pulses, which is the highest laser photostability achieved to date for solid-state lasers based on organic polymeric materials doped with laser dyes. This result indicates that the double covalent linkage of the BODIPY chromophore to a PMMA polymeric matrix is even more efficient than the simple linkage, for its photostabilization under laser operation. [source]

Mechanochemical Synthesis of Blue Luminescent Alkyl/Alkenyl-Passivated Silicon Nanoparticles

S. Heintz
A mechanochemical method for the simultaneous one-step production and functionalization of silicon nanoparticles is presented. Fresh surface created through mechanical attrition of the silicon during high energy ball milling (HEBM) allows for direct reaction between the silicon and the reactive alkene or alkyne media, resulting in a covalent linkage. The resulting nanoparticles exhibit strong blue luminescence, indicative of small nanoparticle sizes and a functionalized surface. [source]

Modifications of the iron,neuromelanin system in Parkinson's disease

Mauro Fasano
Abstract Parkinson's disease is a common neurodegenerative disorder with a mainly sporadic aetiology, although a number of monogenic familiar forms are known. Most of the motor symptoms are due to selective depletion of dopaminergic, neuromelanin-containing neurones of the substantia nigra pars compacta. Neuromelanin is the dark insoluble macromolecule that confers the black (substantia nigra) or grey (locus coeruleus) colour to monoaminergic basal ganglia. In particular, nigral neurones are pigmented because of the accumulation of by-products of oxidative metabolism of the neurotransmitter dopamine. The occurrence of dopamine (and all the enzymatic machinery required for dopamine synthesis, re-uptake and disposal) and neuromelanin, and a large amount of iron ions that interact with them, makes dopaminergic nigral neurones peculiarly susceptible to oxidative stress conditions that, in turn, may become amplified by the iron,neuromelanin system itself. In this mini-review we describe biophysical evidence for iron,neuromelanin modifications that support this hypothesis. Furthermore, we discuss the formation of the covalent linkage between ,-synuclein and neuromelanin from the early stages of the disease. [source]

Preparation and shear properties of carbon nanotubes/poly(butyl methacrylate) hybrid material

Wen-Hua Li
Composites containing carbon nanotubes (CNTs) in a poly(butyl methacrylate) (PBMA) have been prepared by in situ polymerization. Scanning electron microscopy and high-resolution transmission electron microscope showed that CNTs were well dispersed into PBMA matrix and wrapped with PBMA. The infrared spectrum illustrated that CNTs were covalently linked with PBMA through a CC bond. Owing to this covalent linkage, the composites had a better solubility in organic solvents and had higher thermal stability over pure PBMA. The direct shear testing showed strong mechanical behavior with up to 200% increase in Young's modulus. The possible strengthening mechanism was discussed. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]

An interdomain disulfide bridge links the NtA and first FS domain in agrin

PROTEIN SCIENCE, Issue 12 2009
Ainsley A. McFarlane
Abstract Agrin is a multidomain heparan sulfate proteoglycan involved in postsynaptic differentiation at the neuromuscular junction. Binding of agrin to synaptic basal lamina is mediated by the N -terminal agrin (NtA) domain. The NtA domain of agrin is followed by a tandem of nine follistatin-like (FS) domains forming a rod-like spacer to the laminin G-like domains of the molecule. Here we report that the most C -terminal cysteine residue of NtA (Cys123) forms an interdomain disulfide bond with the FOLN subdomain of the FS module. Remarkably, this single cysteine is flanked by Leu117 and Val124, which are two essential ,-branched amino acids forming the heterocomplex of NtA with the ,1 chain of laminin. Moreover, we show that this covalent linkage compensates for the seven amino acid residue splice insert at the very C-terminal helix H3 and causes a rigid interface between NtA and FS independent of the alternative mRNA splice event. These results suggest that the interdomain disulfide bond between the NtA and the first FS domain might be important for the proper folding of agrin. [source]

Structural Fabrication and Functional Modulation of Nanoparticle,Polymer Composites

Hao Zhang
Abstract This review article summarizes recent progress in the fabrication methodologies and functional modulations of nanoparticle (NP),polymer composites. On the basis of the techniques of NP synthesis and surface modification, the fabrication methods of nanocomposites are highlighted; these include surface-initiated polymerization on NPs, in situ formation of NPs in polymer media, and the incorporation through covalent linkages and supramolecular assemblies. In these examples, polymers are foremost hypothesized as inert hosts that stabilize and integrate the functionalities of NPs, thus improving the macroscopic performance of NPs. Furthermore, due to the unique physicochemical properties of polymers, polymer chains are also dynamic under heating, swelling, and stretching. This creates an opportunity for modulating NP functionalities within the preformed nanocomposites, which will undoubtedly promote the developments of optoelectronic devices, optical materials, and intelligent materials. [source]

Transglutaminase Catalysis of Modified Whey Protein Dispersions

Debra A. Clare
ABSTRACT:, Transglutaminase (TGase) cross-linking reactions were accomplished using a heat-modified whey protein concentrate (mWPC) substrate after pH adjustment to 8. Based on earlier reports, the degree of lactosylation with respect to ,-lactoglobulin was lower in mWPC dispersions than measured in commercial whey concentrate (cWPC) protein solutions. In this study, a higher concentration of free sulfhydryl groups was detected in soluble supernatant fractions. Both factors potentially impact the availability of reactive lysine/glutaminyl residues required for TGase reactivity. The addition of 10 mM dithiothreitol (DTT) to the substrate mix, CBZ-glutaminyl glycine and hydroxylamine, revealed a 3.6-fold increase in TGase activity, likely due in part to maintenance of the catalytic cysteine residue in a reduced state. Furthermore, inclusion of DTT to mWPC dispersions significantly raised the apparent viscosity, independently of enzyme modification, while the rate of polymerization increased 2-fold based on OPA assay measurements. Limited cross-linking slightly increased the apparent viscosity, whereas extensive coupling lowered these values compared to equivalent nonenzyme-treated mWPC samples. Carbohydrate-staining revealed formation of glyco-polymers due to covalent linkages between glucosamine and mWPC proteins after TGase processing. Again, the apparent viscosity decreased after extensive enzymatic modification. Larger particles, sized 11.28 ,m, were observed in the structural matrix of TGase-mWPC-fixed samples compared to 8 ,m particles in control mWPC samples as viewed in scanning electron micrographs. Ultimately, the functional characteristics of TGase-mWPC ingredients may be custom-designed to deliver alternative functional attributes by adjusting the experimental reaction conditions under which catalysis is achieved. Practical Application: Taken together, these results suggest that unique TGase-mWPC and/or TGase-mWPC-glucosamine ingredients may be designed to provide novel, value-added, polymeric/glyco-polymeric protein products that afford added benefit for the milk industry. [source]

The ,-1,3-glucanosyltransferase gas4p is essential for ascospore wall maturation and spore viability in Schizosaccharomyces pombe

María De Medina-Redondo
Summary Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the ,-1,3-glucan synthase bgs2p synthesizes linear ,-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between ,-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with ,-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4+, a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4, diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4+ is strongly induced during sporulation and a yellow fluorescent protein (YFP),gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe. [source]