Home About us Contact | |||
Covalent Complex (covalent + complex)
Selected AbstractsCovalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450sccFEBS JOURNAL, Issue 6 2001Edman degradation of complexes of the steroidogenic hydroxylase system, Mass spectrometry NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin ,P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin,P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system. [source] Characterization of a nif-regulated flavoprotein (FprA) from Rhodobacter capsulatusFEBS JOURNAL, Issue 3 20002S] ferredoxin, Redox properties, molecular interaction with a [2Fe A flavoprotein from Rhodobacter capsulatus was purified as a recombinant (His)6 -tag fusion from an Escherichia coli clone over-expressing the fprA structural gene. The FprA protein is a homodimer containing one molecule of FMN per 48-kDa monomer. Reduction of the flavoprotein by dithionite showed biphasic kinetics, starting with a fast step of semiquinone (SQ) formation, and followed by a slow reduction of the SQ. This SQ was in the anionic form as shown by EPR and optical spectroscopies. Spectrophotometric titration gave a midpoint redox potential for the oxidized/SQ couple of Em1 = +20 mV (pH 8.0), whereas the SQ/hydroquinone couple could not be titrated due to the thermodynamic instability of SQ associated with its slow reduction process. The inability to detect the intermediate form, SQ, upon oxidative titration confirmed this instability and led to an estimate of Em2 , Em1 of > 80 mV. The reduction of SQ by dithionite was significantly accelerated when the [2Fe,2S] ferredoxin FdIV was used as redox mediator. The midpoint redox potential of this ferredoxin was determined to be ,275 ± 2 mV at pH 7.5, consistent with FdIV serving as electron donor to FprA in vivo. FdIV and FprA were found to cross-react when incubated together with the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, giving a covalent complex with an Mr of , 60 000. Formation of this complex was unaffected by the redox states of the two proteins. Other [2Fe,2S] ferredoxins, including FdV and FdVI from R. capsulatus, were ineffective as electron carriers to FprA, and cross-reacted poorly with the flavoprotein. The possible function of FprA with regard to nitrogen fixation was investigated using an fprA -deleted mutant. Although nitrogenase activity was significantly reduced in the mutant compared with the wild-type strain, nitrogen fixation was apparently unaffected by the fprA deletion even under iron limitation or microaerobic conditions. [source] Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinaseMOLECULAR MICROBIOLOGY, Issue 6 2006James Yates Summary Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsKC, which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsKC interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the ,bottom' strand. The resulting recombinase,DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsKC -mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD,FtsKC interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected. [source] Two polymorphs of a covalent complex between papain and a diazomethylketone inhibitor,CHEMICAL BIOLOGY & DRUG DESIGN, Issue 4 2004R. Janowski Abstract:, The three-dimensional structure of two polymorphs of a ZLFG-CH2,papain covalent complex has been determined by X-ray crystallography. The structures indicate that: (i) the methylene carbon atom of the inhibitor is covalently bound to the S, atom of Cys25 of papain; (ii) the hydrophobic S2 pocket formed by Pro68, Val133, Val157, and Asp158 is occupied by the inhibitor's phenylalanyl P2 side chain; (iii) extensive hydrogen bonding and hydrophobic interactions are responsible for the interaction of the inhibitor with the enzyme. Comparison with similar structures suggests that in covalent complexes preservation of main chain,main chain interactions between the enzyme and the inhibitor may have higher priority than the P,S interactions. [source] Topoisomerases of kinetoplastid parasites: why so fascinating?MOLECULAR MICROBIOLOGY, Issue 4 2006Benu Brata Das Summary DNA topoisomerases are the key enzymes involved in carrying out high precision DNA transactions inside the cells. However, they are detrimental to the cell when a wide variety of topoisomerase-targeted drugs generate cytotoxic lesions by trapping the enzymes in covalent complexes on the DNA. The discovery of unusual heterodimeric topoisomerase I in kinetoplastid family added a new twist in topoisomerase research related to evolution, functional conservation and their preferential sensitivity to Camptothecin. On the other hand, structural and mechanistic studies on kinetoplastid topoisomerase II delineate some distinguishing features that differentiate the parasitic enzyme from its prokaryotic and eukaryotic counterparts. This review summarizes the recent advances in research in kinetoplastid topoisomerases, their evolutionary significance and the death of the unicellular parasite Leishmania donovani induced by topoisomerase I inhibitor camptothecin. [source] Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibitionPROTEIN SCIENCE, Issue 8 2000Miljan Simonovic Abstract CrmA is an unusual viral serpin that inhibits both cysteine and serine proteinases involved in the regulation of host inflammatory and apoptosis processes. It differs from other members of the serpin superfamily by having a reactive center loop that is one residue shorter, and by its apparent inability to form SDS-stable covalent complexes with cysteine proteinases. To obtain insight into the inhibitory mechanism of crmA, we determined the crystal structure of reactive center loop-cleaved crmA to 2.9 Å resolution. The structure, which is the first of a viral serpin, suggests that crmA can inhibit cysteine proteinases by a mechanism analogous to that used by other serpins against serine proteinases. However, one striking difference from other serpins, which may be significant for in vivo function, is an additional highly charged antiparallel strand for , sheet A, whose sequence and length are unique to crmA. [source] |