Covalent Chemistry (covalent + chemistry)

Distribution by Scientific Domains

Selected Abstracts

Functional Covalent Chemistry of Carbon Nanotube Surfaces

Xiaohui Peng
Abstract In this Progress Report, we update covalent chemical strategies commonly used for the focused functionalization of single-walled carbon nanotube (SWNT) surfaces. In recent years, SWNTs have been treated as legitimate nanoscale chemical reagents. Hence, herein we seek to understand, from a structural and mechanistic perspective, the breadth and types of controlled covalent reactions SWNTs can undergo in solution phase, not only at ends and defect sites but also along sidewalls. We explore advances in the formation of nanotube derivatives that essentially maintain and even enhance their performance metrics after precise chemical modification. We especially highlight molecular insights (and corresponding correlation with properties) into the binding of functional moieties onto carbon nanotube surfaces. Controllable chemical functionalization suggests that the unique optical, electronic, and mechanical properties of SWNTs can be much more readily tuned than ever before, with key implications for the generation of truly functional nanoscale working devices. [source]

Combining Metallasupramolecular Chemistry with Dynamic Covalent Chemistry: Synthesis of Large Molecular Cages,

Anton Granzhan Dr.
Vom Dreieck zum Würfel: Mithilfe der Methodenkombination im Titel gelangt man zu komplizierten Nanostrukturen wie den großen Käfigen, die aus dreikernigen Metallamakrocyclen mit anhängenden Aldehydfunktionen (siehe Bild; Ru,blau, Aldehyd-Linker grün) und Triaminen (rot) synthetisiert wurden. [source]

A new method for the aqueous functionalization of superparamagnetic Fe2O3 nanoparticles

Fernando Herranz
Abstract A new methodology for the synthesis of hydrophilic iron oxide nanoparticles has been developed. This new method is based on the direct chemical modification of the nanoparticles' surfactant molecules. Using this methodology both USPIO (ultrasmall super paramagnetic iron oxide) (hydrodynamic size smaller than 50,nm) and SPIO (super paramagnetic iron oxide) (hydrodynamic size bigger than 50,nm) were obtained. In addition, we also show that it is possible to further functionalize the hydrophilic nanoparticles via covalent chemistry in water. The magnetic properties of these nanoparticles were also studied, showing their potential as MRI contrast agents. Copyright © 2008 John Wiley & Sons, Ltd. [source]

Optical spectra and covalent chemistry of fulleropyrrolidines

B. S. Razbirin
Abstract Low-temperature vibronic spectra of two fulleropyrrolidines (1-methyl-3,4-FP and 1-methyl-2(4-pyridine)-3,4-FP) embedded in crystalline toluene matrix have been studied. Two-component composition of the spectra has been established and charge-transfer-excitation origin of the structureless component has been suggested. Fine-structured Shpol'skii spectra were observed for 1-methyl-3,4-FP, which made possible to perform the vibrational analysis of its vibronic spectra. General similarities of the absorption spectra of fulleropyrrolidines and C60 molecules along with significant difference in their details have been discussed. A detailed interpretation of the C60 spectra serves as a basis for analyzing the spectra of the derivatives. Quantum-chemical study is based on the effectively-unpaired-electron concept for the fullerene molecule. Computations have been performed for the singlet states of the molecules in unrestricted Hartree,Fock approximation implemented in AM1 semiempirical quantum chemical codes of the CLUSTER-Z1 software. The population of the HOMO and LUMO of the molecules under study alongside with the lowering of the molecules symmetry have been proposed to explain the spectral features observed. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]