Coupled GCMs (coupled + gcm)

Distribution by Scientific Domains


Selected Abstracts


Simulated changes in active/break spells during the Indian summer monsoon due to enhanced CO2 concentrations: assessment from selected coupled atmosphere,ocean global climate models

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2007
Sujata K. Mandke
Abstract The simulations by ten coupled GCMs under the Intergovernmental Panel on Climate Change Assessment Report-4 are used to study the implication of possible global climate change on active/break spells of the Indian summer monsoon (ISM). The validation of the mean daily cycle of the summer monsoon precipitation over the Indian core region and the spatial pattern of the ISM precipitation climatology with observation suggest that six models simulate fairly well, whereas four models differ from observation. Thus, the identification of active/break spells is confined to six models. The sensitivity to climate change has been assessed from two experiments, namely, 1% per year CO2 increase to doubling and 1% per year CO2 increase to quadrupling. The changes in the daily mean cycle and the standard deviation of precipitation, frequency, and duration of active/break spells in future climate change are uncertain among the models and at times among two experiments. The break composite precipitation anomalies strengthen and spread moderately (significantly) in the doubled (quadrupled) CO2 experiment. Copyright © 2006 Royal Meteorological Society [source]


Downscaling daily maximum and minimum temperatures in the midwestern USA: a hybrid empirical approach

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2007
J. T. Schoof
Abstract A new hybrid empirical downscaling technique is presented and applied to assess 21st century projections of maximum and minimum daily surface air temperatures (Tmax, Tmin) over the Midwestern USA. Our approach uses multiple linear regression to downscale the seasonal variations of the mean and standard deviation of daily Tmax and Tmin and the lag-0 and lag-1 correlations between daily Tmax and Tmin based on GCM simulation of the large-scale climate. These downscaled parameters are then used as inputs to a stochastic weather generator to produce time series of the daily Tmax and Tmin at 26 surface stations, in three time periods (1990,2001, 2020,2029, and 2050,2059) based on output from two coupled GCMs (HadCM3 and CGCM2). The new technique is demonstrated to exhibit better agreement with surface observations than a transfer-function approach, particularly with respect to temperature variability. Relative to 1990,2001 values, downscaled temperature projections for 2020,2029 indicate increases that range (across stations) from 0.0 K to 1.7 K (Tmax) and 0.0 K to 1.5 K (Tmin), while increases for 2050,2059 relative to 1990,2001 range from 1.4 K to 2.4 K (Tmax) and 0.8 to 2.2K (Tmin). Although the differences between GCMs demonstrate the continuing uncertainty of GCM-based regional climate downscaling, the inclusion of weather-generator parameters represents an advancement in downscaling methodology. Copyright © 2006 Royal Meteorological Society [source]


Estimated migration rates under scenarios of global climate change

JOURNAL OF BIOGEOGRAPHY, Issue 7 2002
Jay R. Malcolm
Aim Greenhouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 -doubled climatic forcing. Location Global. Methods Migration distances were calculated between grid cells of future biome type x and nearest same-biome-type cells in the current climate. In `base-case' calculations, we assumed that 2 × CO2 climate forcing would occur in 100 years, we used ten biome types and we measured migration distances as straight-line distances ignoring water barriers and human development. In sensitivity analyses, we investigated different time periods of 2 × CO2 climate forcing, more narrowly defined biomes and barriers because of water bodies and human development. Results In the base-case calculations, average migration rates varied significantly according to the GVM used (BIOME3 vs. MAPSS), the age of the GCM (older- vs. newer-generation GCMs), and whether or not GCMs included sulphate cooling or CO2 fertilization effects. However, high migration rates (, 1000 m year,1) were relatively common in all models, consisting on average of 17% grid cells for BIOME3 and 21% for MAPSS. Migration rates were much higher in boreal and temperate biomes than in tropical biomes. Doubling of the time period of 2 × CO2 forcing reduced these areas of high migration rates to c. 12% of grid cells for both BIOME3 and MAPSS. However, to obtain migration rates in the Boreal biome that were similar in magnitude to those observed for spruce when it followed the retreating North American Glacier, a radical increase in the period of warming was required, from 100 to >1000 years. A reduction in biome area by an order of magnitude increased migration rates by one to three orders of magnitude, depending on the GVM. Large water bodies and human development had regionally important effects in increasing migration rates. Main conclusions In conclusion, evidence from coupled GCMs and GVMs suggests that global warming may require migration rates much faster than those observed during post-glacial times and hence has the potential to reduce biodiversity by selecting for highly mobile and opportunistic species. Several poorly understood factors that are expected to influence the magnitude of any such reduction are discussed, including intrinsic migrational capabilities, barriers to migration, the role of outlier populations in increasing migration rates, the role of climate in setting range limits and variation in species range sizes. [source]


The role of atmosphere feedbacks during ENSO in the CMIP3 models

ATMOSPHERIC SCIENCE LETTERS, Issue 3 2009
James Lloyd
Abstract Several studies using ocean-atmosphere GCMs suggest that the atmospheric component plays a dominant role in the modelled ENSO. To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (µ) and the heat flux negative feedback (,), are analysed here in 12 coupled GCMs. We find that the models generally underestimate both feedbacks, leading to an error compensation. The strength of , is inversely related to the ENSO amplitude in the models and the latent heat and shortwave flux components of this feedback dominate. Furthermore, the shortwave component could help explain the model diversity in both overall , and ENSO amplitude. Copyright © 2009 Royal Meteorological Society and Crown copyright. [source]