Column Test (column + test)

Distribution by Scientific Domains


Selected Abstracts


Improved methods for carbon adsorption studies for water and wastewater treatment

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2006
Wei-chi Ying
Abstract An improved method was developed to rank activated carbon in removing organic water pollutants. The simple and standardized evaluation method uses a set of four adsorptive capacity indicators: phenol, iodine, methylene blue, and tannic acid numbers; those four indicator compounds were selected because they cover the molecular size range of most organic water pollutants. An improved microcolumn rapid breakthrough (MCRB) test method was developed from the existing HPMC (high-pressure minicolumn) and RSSCT (rapid small-scale column test) methods by simplifying the experimental procedure and using readily available low-cost pump, sampler, piping, and fittings. This method can be practiced in an ordinary environmental laboratory to select the best carbon, to verify the treatment effectiveness, and to estimate the adsorption treatment cost based on the observed capacity utilization rate for carbon in the adsorber without the problems often encountered with using small and mini traditional columns. The benefits of the four-parameter carbon selection method and the MCRB method were demonstrated by adsorption isotherm and breakthrough data for several indicator compounds and organic water pollutants. These improved methods will enable efficient carbon adsorption studies necessary for more applications of carbon adsorption technology in water and wastewater treatment. © 2006 American Institute of Chemical Engineers Environ Prog, 2006 [source]


Nitrate Removal Rates in a 15-Year-Old Permeable Reactive Barrier Treating Septic System Nitrate

GROUND WATER MONITORING & REMEDIATION, Issue 3 2008
W.D. Robertson
Permeable reactive barriers (PRBs) have gained popularity in recent years as a low-cost method for ground water remediation. However, their cost advantage usually requires that these barriers remain maintenance free for a number of years after installation. In this study, sediment cores were retrieved from a pilot-scale PRB consisting of a sand and wood particle (sawdust) mixture that has been in continuous operation for 15 years treating nitrate from a septic system plume in southern Ontario (Long Point site). Reaction rates for the 15-year-old media were measured in dynamic flow column tests and were compared to rates measured in year 1 using the same reactive mixture. Nitrate removal rates in the 15-year-old media varied, as expected, with temperature in the range of 0.22 to 1.1 mg N/L/d at 6 °C to 10 °C to 3.5 to 6.0 mg N/L/d at 20 °C to 22 °C. The latter rates remained within about 50% of the year 1 rates (10.2 ± 2.7 mg N/L/d at 22 °C). Near the end of the year 15 column test, media particles >0.5 mm in diameter, containing most of the wood particles, were removed from the reactive media by sieving. Nitrate removal subsequently declined by about 80%, indicating that the wood particles were the principal energy source for denitrification. This example shows that some denitrifying PRBs can remain maintenance free and be adequately reactive for decades. [source]


Quantification of irreversible benzene sorption in sandy materials

HYDROLOGICAL PROCESSES, Issue 17 2004
Dong-Ju Kim
Abstract Based on a previous study of the irreversible sorption of benzene in sandy aquifer materials, we further investigated a method to quantify an irreversible sorption coefficient of aqueous benzene. Assuming that the rate of irreversible loss from the solution to the sorption sites followed first-order kinetics, the irreversible sorption coefficient was derived from a kinetic batch sorption test conducted for an appropriate soil-to-solution ratio to reflect the flow conditions imposed on a column test. Simulation results revealed that the irreversible sorption coefficient estimated from the kinetic batch test provided a good agreement with the measured data obtained from the column test, indicating that the method proposed in this study can be used to quantify the irreversible sorption coefficient. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Nitrate Removal Rates in a 15-Year-Old Permeable Reactive Barrier Treating Septic System Nitrate

GROUND WATER MONITORING & REMEDIATION, Issue 3 2008
W.D. Robertson
Permeable reactive barriers (PRBs) have gained popularity in recent years as a low-cost method for ground water remediation. However, their cost advantage usually requires that these barriers remain maintenance free for a number of years after installation. In this study, sediment cores were retrieved from a pilot-scale PRB consisting of a sand and wood particle (sawdust) mixture that has been in continuous operation for 15 years treating nitrate from a septic system plume in southern Ontario (Long Point site). Reaction rates for the 15-year-old media were measured in dynamic flow column tests and were compared to rates measured in year 1 using the same reactive mixture. Nitrate removal rates in the 15-year-old media varied, as expected, with temperature in the range of 0.22 to 1.1 mg N/L/d at 6 °C to 10 °C to 3.5 to 6.0 mg N/L/d at 20 °C to 22 °C. The latter rates remained within about 50% of the year 1 rates (10.2 ± 2.7 mg N/L/d at 22 °C). Near the end of the year 15 column test, media particles >0.5 mm in diameter, containing most of the wood particles, were removed from the reactive media by sieving. Nitrate removal subsequently declined by about 80%, indicating that the wood particles were the principal energy source for denitrification. This example shows that some denitrifying PRBs can remain maintenance free and be adequately reactive for decades. [source]


Evaluating the transport and removal of chromate using pyrite and biotite columns

HYDROLOGICAL PROCESSES, Issue 14 2007
Chul-Min Chon
Abstract To remove chromate from a wastewater, a porous permeable reactive barrier system (PRBS), using pyrite and biotite, was adapted. This study included bench-scale column experiments to evaluate the efficiency of the PRBS and investigate the reaction process. The total chromium concentration of the effluent from the biotite and pyrite columns reached the influent concentration of 0·10 mM after passing through more than 150 pore volumes (PVs) and 27 PVs respectively, and remained constant thereafter. The CrVI concentration in the effluent from the biotite column became constant at about 0·08 mM, accounting for approximately 80% of the influent concentration, after passing through 200 PVs. Moreover, in the pyrite column, the CrVI concentration remained at about 0·01 mM, 10% of the input level, after passing through 116 PVs. This shows that both columns maintained their levels of chromate reduction once the CrVI breakthrough curves (BTCs) had reached the steady state, though the steady-state output concentration of total chromium had reached the influent level. The variances of the iron concentration closely followed those of the chromium. The observed data for both columns were fitted to the predicted BTCs calculated by CXTFIT, a program for estimating the solute transport parameters from experimental data. The degradation coefficient µ of the total chromium BTCs for both columns was zero, suggesting the mechanisms for the removal of chromate limit the µ of the CrVI BTCs. The CrVI degradation of the pyrite column (6·60) was much greater than that of the biotite column (0·27). In addition, the CrVI retardation coefficient R of the pyrite column (253) was also larger than that of the biotite column (125). The R values for the total chromium BTCs from both columns were smaller than those of the CrVI BTC. Whereas the total chromium BTC for the pyrite column showed little retardation (1·5), the biotite column showed considerable retardation (80). The results for the 900 °C heat-treated biotite column were analogous to those of the control column (quartz sand). This suggests that the heat-treated biotite played no role in the retardation and removal of hexavalent chromium. The parameters of the heat-treated biotite were calculated to an R of 1·2 and µ of 0·01, and these values confirmed quantitatively that the heated biotite had little effect on the transport of CrVI. These solute transport parameters, calculated by CXTFIT from the data obtained from the column tests, can provide quantitative information for the evaluation of bench- or field-scale columns as a removal technology for CrVI in wastewater or contaminated groundwater. Copyright © 2006 John Wiley & Sons, Ltd. [source]