Column Technology (column + technology)

Distribution by Scientific Domains


Selected Abstracts


Cover Picture: Electrophoresis 24'2009

ELECTROPHORESIS, Issue 24 2009
Article first published online: 10 DEC 200
Issue no. 24 has 20 contributions on "Miniaturization". This special issue of Miniaturization "features reports on the latest developments in miniaturized systems focused on Instrumentation, Bioanalysis, and Column Technology and Microfluidic Protocols". In addition, the issue presents a Fast Track article describing a microwell array device with integrated microfluidic components for enhanced single-cell analysis. [source]


Recent progress in enantiomeric separation by capillary electrochromatography

ELECTROPHORESIS, Issue 22-23 2002
Jingwu Kang
Abstract Recent progress in enantiomeric separations by capillary electrochromatography (CEC) is reviewed. The development of simple and robust CEC column technologies plays an important role for popularization of CEC. During the last several years, various approaches for the preparation of enantioselective columns have been reported. Currently, the monolithic column technology (continuous beds) represents the most advanced approach for the preparation of CEC columns. The development of new chiral stationary phase used for CEC is another important issue in this field. Fundamental investigations on electrochromatographic behaviors of various CSPs are necessary in order to understand the separation mechanism and thus improve the separation performance. Some chiral stationary phases performed better under nonaqueous CEC conditions than reversed-phase conditions. Coupling CEC with mass spectrometry (MS) provides a powerful tool for enantiomeric separation. Finally, some applications of enantiomeric separation by CEC are summarized. [source]


Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns

ELECTROPHORESIS, Issue 22-23 2002
Abdul Malik
Abstract The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology. [source]


Recent progress in enantiomeric separation by capillary electrochromatography

ELECTROPHORESIS, Issue 22-23 2002
Jingwu Kang
Abstract Recent progress in enantiomeric separations by capillary electrochromatography (CEC) is reviewed. The development of simple and robust CEC column technologies plays an important role for popularization of CEC. During the last several years, various approaches for the preparation of enantioselective columns have been reported. Currently, the monolithic column technology (continuous beds) represents the most advanced approach for the preparation of CEC columns. The development of new chiral stationary phase used for CEC is another important issue in this field. Fundamental investigations on electrochromatographic behaviors of various CSPs are necessary in order to understand the separation mechanism and thus improve the separation performance. Some chiral stationary phases performed better under nonaqueous CEC conditions than reversed-phase conditions. Coupling CEC with mass spectrometry (MS) provides a powerful tool for enantiomeric separation. Finally, some applications of enantiomeric separation by CEC are summarized. [source]


Methodology Optimization for Quantification of Total Phenolics and Individual Phenolic Acids in Sweetpotato (Ipomoea batatas L.) Roots

JOURNAL OF FOOD SCIENCE, Issue 7 2007
M.S. Padda
ABSTRACT:, Phenolic acids are one of the several classes of naturally occurring antioxidant compounds found in sweetpotatoes. Simplified, robust, and rapid methodologies were optimized to quantify total and individual phenolic acids in sweetpotato roots. Total phenolic acid content was quantified spectrophotometrically using both Folin,Denis and Folin,Ciocalteu reagents. The Folin,Ciocalteu reagent gave an overestimation of total phenolic acids due to the absorbance of interfering compounds (that is, reducing sugars and ascorbic acid). Individual phenolic acids were quantified by high-performance liquid chromatography (HPLC) using the latest in column technology. Four reversed-phase C18 analytical columns with different properties (dimensions, particle size, particle shape, pore size, and carbon load) were compared. Three different mobile phases using isocratic conditions were also evaluated. A column (4.6 × 150 mm) packed with 5-,m spherical silica particles of pore size 110 Å combined with 14% carbon load provided the best and fast separation of individual phenolic acids (that is, chlorogenic acid, caffeic acid, and 3 isomers of dicaffeoylquinic acid) with a total analysis time of less than 7 min. Among the 3 mobile phases tested, a mobile phase consisting of 1% (v/v) formic acid aqueous solution: acetonitrile: 2-propanol, pH 2.5 (70:22:8, v/v/v) gave adequate separation. Among the solvents tested, aqueous mixtures (80:20, solvent:water) of methanol and ethanol provided higher phenolic acid extraction efficiency than the aqueous mixture of acetone. [source]


Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2007
Naijun Wu
Abstract The ongoing development of HPLC has been focused on increasing the speed and efficiency of separations over the past decade. The advances in separation speed have been primarily related to the development of column technology and instrumentation. Relatively short columns packed with sub-2 ,m particles provide high-speed separations while maintaining or increasing resolution. Ultrahigh pressure pump systems have been developed to overcome the high-pressure drop generated by such sub-2 ,m packings. In this review, fundamental and practical aspects of ultrahigh pressure or ultrahigh performance liquid chromatography (U-HPLC) are discussed. Applications of fast U-HPLC separations are also presented. [source]


Canine Dal Blood Type: A Red Cell Antigen Lacking in Some Dalmatians

JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 2 2007
Marie-Claude Blais
Background:Based upon alloantibodies produced after sensitizing dogs with transfused blood, more than a dozen blood group systems have been recognized thus far, and some have been classified as dog erythrocyte antigens (DEA). Hypothesis:A new canine red cell antigen was suspected, based on the development of specific alloantibodies in a Dalmatian previously sensitized by blood transfusions. Animals:Twenty-six Dalmatians (including 1 Dalmatian in need of blood compatibility studies); 55 canine blood donors. Methods:Serologic tests, including blood typing, crossmatching, and direct Coombs' test were performed by standard tube techniques and a novel gel column technology adapted from human blood banking. Results:By day 40 after transfusion of an anemic Dalmatian, all major crossmatch tests to 55 non-Dalmatian dogs were incompatible. The 2 initial donors, who were compatible before transfusion, were also now incompatible, suggesting the development of an alloantibody to a common red cell antigen. No siblings were available, but 4 of 25 unrelated Dalmatians were crossmatch compatible, suggesting that they were missing the same red cell antigen. The patient was blood typed DEA 1.1, 3, 4, and 5 positive, but DEA 7 negative. Further blood typing and crossmatching results did not support an association to any of these known blood types. The alloantibodies produced were determined to be of the immunoglobulin G class. Conclusions and Clinical Importance: Based upon the identification of an acquired alloantibody in a Dalmatian, a presumably new common blood type named Dal was identified. Dalmatians lacking the Dal antigen are likely at risk of delayed and acute hemolytic transfusion reactions. [source]