Column Experiments (column + experiment)

Distribution by Scientific Domains


Selected Abstracts


Effects of Mixing Granular Iron with Sand on the Kinetics of Trichloroethylene Reduction

GROUND WATER MONITORING & REMEDIATION, Issue 2 2009
Erping Bi
A substantial cost of granular iron permeable reactive barriers is that of the granular iron itself. Cutting the iron with sand can reduce costs, but several performance issues arise. In particular, reaction rates are expected to decline as the percentage of iron in the blend is diminished. This might occur simply as a function of iron content, or mass transfer effects may play a role in a much less predictable fashion. Column experiments were conducted to investigate the performance consequences of mixing Connelly granular iron with sand using the reduction kinetics of trichloroethylene (TCE) to quantify the changes. Five mixing ratios (i.e., 100%, 85%, 75%, 50%, and 25% of iron by weight) were studied. The experimental data showed that there is a noticeable decrease in the reaction rate when the content of sand is 25% by weight (iron mass to pore volume ratio, Fe/Vp = 3548 g/L) or greater. An analysis of the reaction kinetics, using the Langmuir-Hinshelwood rate equation, indicated that mass transfer became an apparent cause of rate loss when the iron content fell below 50% by weight (Fe/Vp = 2223 g/L). Paradoxically, there were tentative indications that TCE removal rates were higher in a 15% sand + 85% iron mixture (Fe/Vp = 4416 g/L) than they were in 100% iron (Fe/Vp = 4577 g/L). This subtle improvement in performance might be due to an increase of iron surface available for contact with TCE, due to grain packing in the sand-iron mixture. [source]


Improved design and optimization models for the fixed bed adsorption of acid dye and zinc ions from effluents

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2002
Danny C
Abstract The bed depth service time (BDST) design model, which accounts for the change of bed adsorption capacity with service time, has been modified to expand its application and overcome the limiting assumptions of the original BDST analysis. Column experiments were undertaken to test the new model for two adsorption systems, namely zinc ion,bone char and Acid Blue 80 dye-activated carbon. It was found that the percentage of saturation capacity could be correlated using a square-root dependence on the service time and this correlation was incorporated into the original BDST analysis to replace the total sorption capacity term, giving the model a much wider application to real systems. The empty bed residence time optimization approach was modified using the same time-dependent capacity expression and was successfully applied to the metal ion,bone char and the dye-activated carbon system with the use of equilibrium saturated bed capacity. These modifications to the BDST design model and the EBRT optimization model will give more accurate scale-up data for the design of large-scale column adsorption systems. © 2002 Society of Chemical Industry [source]


Colloid-Associated contaminant transport in porous media: 1.

AICHE JOURNAL, Issue 10 2002
Experimental studies
Many studies have identified colloid-associated transport of contaminants as an important mechanism of contaminant migration through groundwater. It is a complex phenomenon in porous media involving several basic processes such as adsorption of contaminants, release and migration of colloidal fines, and entrapment of fines at the pore constrictions. The effects of these basic processes on the contaminant transport are studied. Column experiments are conducted to study the effects of the mobilization and migration of colloidal fines, kaolin on the transport of contaminant, and Ni2+ metal ion through the sand beds containing kaolin particles under both nonplugging and plugging conditions. As reported in literature, colloidal fines can facilitate the contaminant transport when they migrate with the flow. In the absence of migration, kaolin-sand beds retard Ni2+ transport in comparison to sand beds due to their higher adsorption capacity, but the sand-kaolin composite bed acts like an inefficient adsorption column with percentage saturation (which is in general below 25%). It is interesting to note that under plugging conditions, which can be induced by using a lower bead size to particle-size ratio, the breakthrough curves are more flattened and delayed at a higher kaolin content of the bed. [source]


Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007
P. N. C. MurphyArticle first published online: 13 OCT 200
Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source]


PAR and UV Effects on Vertical Migration and Photosynthesis in Euglena gracilis,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Peter Richter
Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m,2, UV-A 32.6 W m,2, UV-B 1.9 W m,2). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again. [source]


The inherent ,safety-net' of an Acrisol: measuring and modelling retarded leaching of mineral nitrogen

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2002
D. Suprayogo
Summary The inherent features of Acrisols with their increasing clay content with depth are conducive to reducing nutrient losses by nutrient adsorption on the matrix soil surfaces. Ammonium (NH4+) and nitrate (NO3,) adsorption by a Plinthic Acrisol from Lampung, Indonesia was studied in column experiments. The peak of the H218O breakthrough occurred at 1 pore volume, whereas the median pore volumes for NH4+ and NO3, ranged from 6.4 to 6.9 and 1.1 to 1.6, respectively. The adsorption coefficients (Ka in cm3 g,1) measured were 1.81, 1.51, 1.64 and 1.47 for NH4+ and 0.03, 0.09, 0.10 and 0.17 for NO3,, respectively, in the 0,0.2, 0.2,0.4, 0.4,0.6 and 0.6,0.8 m soil depth layers. The NH4+ and NO3, adsorption coefficients derived from this study were put in to the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model to evaluate their effect on leaching in the context of several cropping systems in the humid tropics. The resulting simulations indicate that the inherent ,safety-net' (retardation mechanism) of a shallow (0.8,1 m) Plinthic Acrisol can reduce the leaching of mineral N by between 5 and 33% (or up to 2.1 g m,2), mainly due to the NH4+ retardation factor, and that the effectiveness in reducing N leaching increases with increasing depth. However, the inherent ,safety-net' is useful only if deep-rooted plants can recover the N subsequently. [source]


Physicochemical factors controlling the release of dissolved organic carbon from columns of forest subsoils

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2002
J.-M. Münch
Summary Retention of dissolved organic carbon in soil depends on the chemical and physical environment. We studied the release of organic carbon from three carbonate-free forest subsoil materials (Bs1, Bs2, Bg) in unsaturated column experiments as influenced by (i) variations of the flow regime and (ii) varied chemical properties of the irrigation solution. We investigated the effect of flow initiation, constant irrigation, interruptions to flow, and variation in the effective pore water velocity on the release of organic C. The influence of ionic strength and cation valence in the irrigation solution was studied by stepped pulses of NaCl and CaCl2. The release of C from all materials was characterized by an initial large output and a decline to constant concentrations under long-term irrigation. Interrupting the flow increased its release when flow was resumed. The release from the Bs1 material was not related to the duration of the interruption. The Bs2 material, in contrast, released organic carbon in a way that was successfully described by a kinetic first-order model. Increased pore water velocity decreased the concentrations of C in the effluent from it. The pH of the irrigation solution had negligible effects on the mobilization of C. Increased ionic strength reduced the release, whereas rinsing with distilled water increased the concentrations of C in the effluent. The response of dissolved C to pulses of weak solutions, however, was sensitive to the type of cation in the previous step with strong solutions. The results suggest that the release of organic matter in the soils depends on its colloidal properties. [source]


Degradation of TCE with Iron: The Role of Competing Chromate and Nitrate Reduction

GROUND WATER, Issue 3 2000
Oliver Schlicker
This study evaluates the potential of using granular iron metal for the abiotic removal of the organic ground water pollutant trichloroethene (TCE) in the presence of the common inorganic co-contaminants chromate and nitrate, respectively. Our long-term column experiments indicate a competitive process between TCE dechlorination and reductive transformation of chromate and nitrate, which is reflected in a significantly delayed onset of TCE dechlorination. Delay times and therefore the ranges of the nonreactive flowpaths increased with increasing experimental duration, resulting in a migration of the contaminants through the iron metal treatment zone. The present investigation also indicates that the calculated migration rates of TCE and the added cocontaminants chromate and nitrate are linearly related to the initial content of the cocontaminants. With an average pore water velocity of 0.6 m/d and a surface area concentration of 0.55 m2/mL in the column, the calculated migration rates varled between 0.10 cm/d and 5.86 cm/d. The particular similarity between the values of TCE migration and the migration of the strong oxidants chromate and nitrate and the long-term steady state of the TCE dechlorination in the absence of the chromate and nitrate indicates that these competitive transformations are the driving force for the gradual passivation of the granular iron due to the buildup of an electrically insulating Fe(III)-oxyhydroxide. Based on these passivation processes, general formulae were developed that allow a simplified approximation of breakthrough times for the contaminants TCE, chromate, and nitrate. [source]


Evaluating the transport and removal of chromate using pyrite and biotite columns

HYDROLOGICAL PROCESSES, Issue 14 2007
Chul-Min Chon
Abstract To remove chromate from a wastewater, a porous permeable reactive barrier system (PRBS), using pyrite and biotite, was adapted. This study included bench-scale column experiments to evaluate the efficiency of the PRBS and investigate the reaction process. The total chromium concentration of the effluent from the biotite and pyrite columns reached the influent concentration of 0·10 mM after passing through more than 150 pore volumes (PVs) and 27 PVs respectively, and remained constant thereafter. The CrVI concentration in the effluent from the biotite column became constant at about 0·08 mM, accounting for approximately 80% of the influent concentration, after passing through 200 PVs. Moreover, in the pyrite column, the CrVI concentration remained at about 0·01 mM, 10% of the input level, after passing through 116 PVs. This shows that both columns maintained their levels of chromate reduction once the CrVI breakthrough curves (BTCs) had reached the steady state, though the steady-state output concentration of total chromium had reached the influent level. The variances of the iron concentration closely followed those of the chromium. The observed data for both columns were fitted to the predicted BTCs calculated by CXTFIT, a program for estimating the solute transport parameters from experimental data. The degradation coefficient µ of the total chromium BTCs for both columns was zero, suggesting the mechanisms for the removal of chromate limit the µ of the CrVI BTCs. The CrVI degradation of the pyrite column (6·60) was much greater than that of the biotite column (0·27). In addition, the CrVI retardation coefficient R of the pyrite column (253) was also larger than that of the biotite column (125). The R values for the total chromium BTCs from both columns were smaller than those of the CrVI BTC. Whereas the total chromium BTC for the pyrite column showed little retardation (1·5), the biotite column showed considerable retardation (80). The results for the 900 °C heat-treated biotite column were analogous to those of the control column (quartz sand). This suggests that the heat-treated biotite played no role in the retardation and removal of hexavalent chromium. The parameters of the heat-treated biotite were calculated to an R of 1·2 and µ of 0·01, and these values confirmed quantitatively that the heated biotite had little effect on the transport of CrVI. These solute transport parameters, calculated by CXTFIT from the data obtained from the column tests, can provide quantitative information for the evaluation of bench- or field-scale columns as a removal technology for CrVI in wastewater or contaminated groundwater. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Evaluation of a laser-assisted particle sizing/settling velocity determination technique

HYDROLOGICAL PROCESSES, Issue 9 2006
Dr I. G. Droppo
Abstract The use of predictive models for the understanding and management of sediment and contaminant transport generally requires knowledge of particle size and settling velocity. Particle size is often obtained by direct measurements, and the settling velocities are usually predicted using the Stokes' law (or a modification thereof) for single-grained spherical particles. Such measurements and estimates are not satisfactory measures for cohesive sediments, which exist as agglomerated particles called flocs and whose behaviour is significantly different from that of the single-grained particles. Direct measurement of settling velocity and size using optical methods in settling columns has also been employed to improve these predictions; however, the subjectivity in determining which particles are in focus results in unreliable size data. An out-of-focus particle will generally possess a larger size than in reality. This paper evaluates a laser-assisted particle sizing/settling velocity determination technique's ability to eliminate the subjectivity and improve particle-sizing accuracy during settling column experiments. Although the diffraction of light by the translucent standard beads (used for evaluating the technique's accuracy for determining particle size) posed a problem, the results suggest that this technique has potential for assisting researchers to obtain the most accurate settling particle size data possible. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2003
Oriol Gibert
Abstract The aim of the present study was to assess the potential of municipal compost as a carbon source for sulfate-reducing bacteria for acid mine drainage bioremediation for use in permeable reactive barriers at high flow rates (>0.1 m d,1). Two different mixtures of municipal compost, limestone and zero-valent iron were assessed in two column experiments. The effluent solution was systematically analysed throughout the experiments. At the end of the experiments precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffractometry examination and solid digestion and sequential extraction were carried out. Results showed that the effluent was free of metals and acidity. It seems that metal removal was not due to biogenic sulfide generation but to pH increase, ie metal (oxy)hydroxides precipitation. These precipitates can sorb other metals onto the surface. Sorption to organic matter could also contribute to metal removal. When zero-valent iron was present, cementation of copper also occurred. It can be concluded that municipal compost was a poor carbon source to support continuous bacterial activity under high flow rates. Copyright © 2003 Society of Chemical Industry [source]


Reactive transport parameter estimation: Genetic algorithm vs.

AICHE JOURNAL, Issue 8 2009
Monte carlo approach
Abstract This article concerns reactive transport in porous media with an emphasis on the optimization of the chemical parameters. The transport of Cadmium (Cd) and tributyltin (TBT) in column experiments were used as test cases. The reactive transport model is described by a set of chemical reactions with equilibrium constants as the main adjustable parameters. As such a problem is highly nonlinear and can have multiple minima, global parameter estimation methods are more suitable than local gradient-based methods. This article focuses on the application of a genetic algorithm (GA) in estimating chemical equilibrium parameters of a reactive transport model. The GA is capable of minimizing the difference between the measured and modeled breakthrough curves for both Cd and TBT. A comparison between GA and Monte-Carlo approaches shows that the GA performance is better than the Monte-Carlo, especially for a small number of evaluations of the cost function. The results of this study show that the use of GA to estimate the parameters of reactive transport models is promising. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Modeling and design of vapor-phase biofiltration for chlorinated volatile organic compounds

AICHE JOURNAL, Issue 9 2002
Walter Den
A mathematical model was developed for biofilter design and performance prediction with reference to the purification of contaminated gas streams. The model incorporated important aspects such as mass transfer, biodegradation, and adsorption processes. A systematic modeling protocol incorporated the development of a scale-up strategy based on dimensional analysis and similitude. Trichloroethylene (TCE) was employed as the model contaminant for biofiltration testing and model verification. The biokinetic and adsorption parameters for the contaminant were determined independently from a series of minibiofilter and miniadsorber column experiments, specifically designed to simulate the actual biofilter operational regimes in a miniature scale. Bench-scale biofilter experiments employing granular activated carbon columns indicated the good predictive capability of the model for the removal of TCE. Dynamic simulation studies were performed to assess the transient- and steady-state behavior of the model under various operating conditions. Model sensitivity was studied to evaluate the influence of adsorption equilibrium, transport and biological parameters on the biofilter dynamics. The results demonstrated that the biofilter performance was greatly influenced by the Monod coefficients and the biofilm thickness. [source]


Leaching of heavy metals and nutrients from calcareous sandy-loam soil receiving municipal solid sewage sludge

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2010
Mohsen Jalali
Abstract Leaching column experiments were conducted to determine the degree of mobility of heavy metals (HMs) and nutrients after the addition of municipal solid sewage sludge (MSS) in a sandy-loam soil. Treatments were (1) soil application of low metal content MSS, (2) soil application of metal-enriched municipal solid sewage sludge (EMSS), and (3) control. The MSS application represented a dose of 200 Mg dry weight (dw) ha,1. Soil columns were incubated at room temperature for 15 d and were irrigated daily with distilled water to make a total of 557,mm. Leachates were collected and analyzed for HMs and nutrients. The Ni and Pb added to soil via MSS and EMSS were found to be leached through the 20,cm columns of calcareous sandy soil although Ni and Pb concentrations in the percolate were small relative to the total amounts of metals applied. Losses of K+ from the EMSS, MSS, and control were 92.5, 82.0, and 52.5,kg ha,1, respectively. Losses of Mg2+ were in the range from 104.4 (control treatment) to 295.2,kg ha,1 (EMSS), while the loss of Ca2+ was in the range from 265.0 (control treatment) to 568.2,kg ha,1 (EMSS). The results showed that the amounts of P leached from EMSS (3.02,kg ha,1) and MSS (2.97,kg,1 ha,1) were significantly larger than those from the control treatment (1.54,kg ha,1). The geochemical code Visual MINTEQ was used to calculate saturation indices. Leaching of P in different treatments was controlled by rate-limited dissolution of hydroxyapatite, ,-tri-Ca phosphate, and octa-Ca phosphate. The results indicate that application of MSS to a sandy soil, at the loading rate used in this study, may pose a risk in terms of groundwater contamination with Ni, Pb, and the studied nutrients. [source]


Functionalized HMS mesoporous silica as solid phase extractant for Pb(II) prior to its determination by flame atomic absorption spectrometry

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2007
Damián Pérez-Quintanilla
Abstract In this work, a mesoporous silica has been chemically modified with 5-mercapto-1-methyl-1-H-tetrazol using the homogeneous route (MTTZ-HMS). This synthetic route involved the reaction of 5-mercapto-1-methyl-1-H-tetrazol with 3-chloropropyltriethoxysilane, prior to immobilization on the support. The resulting material has been characterized and employed as solid phase extractant for Pb(II). The effect of several variables (stirring time, pH, temperature, metal concentration, presence of other metals) has been studied using batch and column techniques. In batch experiments, 15 min stirring time, 55°C and pH 8 were the optimal conditions for Pb(II) adsorption. In column experiments, sorption was quantitative for 1000 mL of 2.41×10,4 mM of Pb(II) solution and adsorbed ions were eluted out by 5 mL of 1 M HCl (preconcentration factor of 200). Spiked tap water was used for the preconcentration and determination of Pb(II) by flame atomic absorption spectrometry, and a 100% recovery was obtained. The LOD and LOQ values of the proposed method were found to be 3.52×10,3 and 4.20×10,3 mM, respectively. The RSD for three preconcentration experiments was found to be ,2%. The linear working range for measurements was between 2×10,3 and 0.14 mM (y = 0.0136x + 0.0007, R2 = 0.9999). [source]


Modelling approaches to compare sorption and degradation of metsulfuron-methyl in laboratory micro-lysimeter and batch experiments

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2003
Maik Heistermann
Abstract Results of laboratory batch studies often differ from those of outdoor lysimeter or field plot experiments,with respect to degradation as well as sorption. Laboratory micro-lysimeters are a useful device for closing the gap between laboratory and field by both including relevant transport processes in undisturbed soil columns and allowing controlled boundary conditions. In this study, sorption and degradation of the herbicide metsulfuron-methyl in a loamy silt soil were investigated by applying inverse modelling techniques to data sets from different experimental approaches under laboratory conditions at a temperature of 10 °C: first, batch-degradation studies and, second, column experiments with undisturbed soil cores (28 cm length × 21 cm diameter). The column experiments included leachate and soil profile analysis at two different run times. A sequential extraction method was applied in both study parts in order to determine different binding states of the test item within the soil. Data were modelled using ModelMaker and Hydrus-1D/2D. Metsulfuron-methyl half-life in the batch-experiments (t1/2 = 66 days) was shown to be about four times higher than in the micro-lysimeter studies (t1/2 about 17 days). Kinetic sorption was found to be a significant process both in batch and column experiments. Applying the one-rate-two-site kinetic sorption model to the sequential extraction data, it was possible to associate the stronger bonded fraction of metsulfuron-methyl with its kinetically sorbed fraction in the model. Although the columns exhibited strong significance of multi-domain flow (soil heterogeneity), the comparison between bromide and metsulfuron-methyl leaching and profile data showed clear evidence for kinetic sorption effects. The use of soil profile data had significant impact on parameter estimates concerning sorption and degradation. The simulated leaching of metsulfuron-methyl as it resulted from parameter estimation was shown to decrease when soil profile data were considered in the parameter estimation procedure. Moreover, it was shown that the significance of kinetic sorption can only be demonstrated by the additional use of soil profile data in parameter estimation. Thus, the exclusive use of efflux data from leaching experiments at any scale can lead to fundamental misunderstandings of the underlying processes. Copyright © 2003 Society of Chemical Industry [source]


Modified suspension-PVC particles as absorbents of ortho -dichlorobenzene from water

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2 2003
M. Shach-Caplan
Abstract Modified porous PVC particles are studied as absorbents of o-dichlorobenzene (DCB), from water. The modified particles were produced by an in-situ stabilizer-free polymerization/crosslinking of a monomer/crosslinker/peroxide solution absorbed within commercial porous suspension-type PVC particles. The modifying monomers used include styrene with divinyl benzene (DVB) as a crosslinking comonomer, methyl methacrylate (MMA), butyl acrylate (BA), or ethylhexyl acrylate (EHA) with ethylene glycol dimethacrylate (EGDMA) as a crosslinking comonomer. The effect of the nature of the monomers, morphology, porosity, surface area and composition of the modified PVC particles on DCB absorption was studied. Batch experiments (absorption rate and isotherms) were used to screen the PVC absorbents on the basis of absorption rate and absorption capacity. Continuous absorption column experiments were conducted to study the parameters characterizing the absorption process. Both the unmodified and modified PVC particles absorb DCB from water. The PBA and PEHA-modified PVC particles approach equilibrium capacity faster and have greater absorption capacity than neat PVC, PS-modified PVC and PMMA-modified PVC particles. The absorption characteristics are influenced by the modifying polymer's Tg. The rubbery nature of PBA and PEHA yields better absorption in spite of the significantly lower surface area and porosity obtained in the modified PVC particles. Thus, indicating that fast adsorption followed by bulk absorption of DCB is taking place. A clear influence of the crosslinking effect was not established. The continuous absorption experiments were found more efficient than the batch absorption experiments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Gas-Liquid Mass Transfer Approach applied to the Modeling of Flotation in a Bubble Column

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2008
J. Chahed
Abstract A kinetic model developed to describe flotation in a bubble column is presented. This model, developed on the basis of the theory of mass transfer in gas-liquid flows, makes explicit in its formulation the effect of the superficial saturation of bubbles on the kinetics of flotation. The model is applied to the simulation of flotation column experiments for which the classical first-order models, commonly used in flotation modeling, are insufficient to represent the flotation kinetics. The results of the simulations obtained under different hypotheses of simplification and compared to experimental data show that the model succeeds in representing the flotation kinetics in these cases. [source]