Cold Store (cold + store)

Distribution by Scientific Domains


Selected Abstracts


Transcritical CO2 refrigerator and sub-critical R134a refrigerator: A comparison of the experimental results

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 12 2009
Ciro Aprea
Abstract This paper describes experiments comparing a commercial available R134a refrigeration plant subjected to a cold store and a prototype R744 (carbon dioxide) system working as a classical ,split-systems' to cool air in residential applications in a transcritical cycle. Both plants are able to develope a refrigeration power equal to 3000,W. The R744 system utilizes aluminium heat exchangers, a semi-hermetic compressor, a back-pressure valve and a thermostatic expansion valve. The R134a refrigeration plant operates using a semi-hermetic reciprocating compressor, an air condenser followed by a liquid receiver, a manifold with two expansion valves, a thermostatic one and a manual one mounted in parallel, and an air cooling evaporator inside the cold store. System performances are compared for two evaporation temperatures varying the temperature of the external air running over the gas-cooler and over the condenser. The refrigeration load in the cold store is simulated by means of some electrical resistances, whereas the air evaporator of the R744 plant is placed in a very large ambient. The results of the comparison are discussed in terms of temperature of the refrigerants at the compressor discharge line, of refrigerants mass flow rate and of coefficient of performance (COP). The performances measured in terms of COPs show a decrease with respect to the R134a plant working at the same external and internal conditions. Further improvements regarding the components of the cycle are necessary to use in a large-scale ,split-systems' working with the carbon dioxide. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Refrigeration plant exergetic analysis varying the compressor capacity

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2003
C. Aprea
Abstract The paper presents an exergetic analysis of a vapour compressor refrigeration plant when the refrigeration capacity is controlled by varying the compressor speed. The aim is performance evaluation of both the whole plant and its individual components. The analysis of the exergy flow destroyed in each device of the plant varying the compressor speed has been carried out in order to determine the relative irreversibility of the plant components. The vapour compression plant is subjected to a commercially available cold store. The compressor working with R22, R407C and R507 and designed for a revolution speed corresponding to 50 Hz supply current frequency, has been used varying the frequency in the range 30,50 Hz. In this range, the most suitable working fluids proposed as substitutes of R22, as R407C (R32/R125/R134a 23/25/52% in mass), R507 (R125/R143A 50/50% in mass) and R417A (R125/R134a/R600 46.6/50/3.4% in mass), have been tested. The variable-speed compressor is fitted with a pulse-width modulated source inverter (PWM) predominantly used in medium power applications due to its relatively low cost and high efficiency. The basic difference between variable speed refrigeration and conventional refrigeration systems is in the control of the system capacity at part-load conditions. The conventional refrigeration systems are characterized by compressor on/off cycles arising from by the thermostatic control. On the contrary when the inverter is used the capacity of the refrigeration system is matched to the load regulating the compressor motor speed. When the control of the compressor capacity is obtained by varying its speed there is an energy saving with respect to the thermostatic control. The best results of the exergetic analysis have been obtained using R22 followed by the non-azeotropic mixture designed as R407C that confirms, among the fluid candidates R22 substitution a better performance, shown also at the compressor nominal speed. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Photovoltaic-powered cold store and its performance

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2001
J. Nagaraju
Abstract A photovoltaic-powered cold store plant, the first of its kind, has been developed to store 10 tons of frozen fish at ,15°C. It consists of a photovoltaic array (4 kW peak), a battery bank (96 V DC, 180 A H), a vapour compression refrigeration system (1 ton), electronic controls for automatic operation of plant and an insulated cold chamber. Experiments were conducted on the system to evaluate its performance with no heat load (frozen fish at ,15°C) and with different heat loads. It is observed that the system can be operated with a maximum heat load of 2350 W to maintain the walk-in-cooler temperature below the freezing point of fish (,2°C). The performance studies conducted on these subsystems viz., photovoltaic array and battery bank showed that their output has deteriorated in 5 years. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Optimal control and design of a cold store using dynamic optimization

OPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 1 2009
Leo Lukasse
Abstract The design of controlled processes is a combined optimal control and design problem (OCDP). Literature on solving large OCDPs is rare. This paper presents an algorithm for solving large OCDPs. For this algorithm system dynamics, objective function and their first-order derivatives must be continuous in the state, control and design parameters. The algorithm is successfully applied to the combined control and design problem of a cold store with three possible refrigeration technologies: mechanical refrigeration, ventilation and evaporative cooling. As a result, insight into cost effectiveness of the refrigeration technologies is generated. It is concluded that for this cold store in the Netherlands evaporative cooling is too expensive. Ventilation is economically viable if the cold store is to be used in January only. In case the cold store is to be operated all year then it is most economical to rely on mechanical refrigeration only and use the overcapacity during most part of the year to shift refrigeration to low-tariff hours. Copyright © 2008 John Wiley & Sons, Ltd. [source]