Coffee Berry Borer (coffee + berry_borer)

Distribution by Scientific Domains


Selected Abstracts


Twig-Nesting Ants: The Hidden Predators of the Coffee Berry Borer in Chiapas, Mexico

BIOTROPICA, Issue 3 2010
Ashley Larsen
ABSTRACT Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2008
S. M. Philpott
Summary 1Ants are important predators in agricultural systems, and have complex and often strong effects on lower trophic levels. Agricultural intensification reduces habitat complexity, food web diversity and structure, and affects predator communities. Theory predicts that strong top-down cascades are less likely to occur as habitat and food web complexity decrease. 2To examine relationships between habitat complexity and predator effects, we excluded ants from coffee plants in coffee agroecosystems varying in vegetation complexity. Specifically, we studied the effects of eliminating ants on arthropod assemblages, herbivory, damage by the coffee berry borer and coffee yields in four sites differing in management intensification. We also sampled ant assemblages in each management type to see whether changes in ant assemblages relate to any observed changes in top-down effects. 3Removing ants did not change total arthropod densities, herbivory, coffee berry borer damage or coffee yields. Ants did affect densities of some arthropod orders, but did not affect densities of different feeding groups. The effects of ants on lower trophic levels did not change with coffee management intensity. 4Diversity and activity of ants on experimental plants did not change with coffee intensification, but the ant species composition differed. 5Although variation in habitat complexity may affect trophic cascades, manipulating predatory ants across a range of coffee agroecosystems varying in management intensity did not result in differing effects on arthropod assemblages, herbivory, coffee berry borer attack or coffee yields. Thus, there is no clear pattern that top-down effects of ants in coffee agroecosystems intensify or dampen with decreased habitat complexity. [source]


Pest reduction services by birds in shade and sun coffee in Jamaica

ANIMAL CONSERVATION, Issue 2 2010
M. D. Johnson
Abstract The reduction of insect pests by birds in agriculture may provide an incentive for farming practices that enhance the conservation value of farms for birds and other wildlife. We investigated pest reduction services by insectivorous birds on a coffee farm in Jamaica, West Indies. Our results suggest that birds reduced insect pests on our study site. Infestation by the coffee berry borer Hypothenemus hampei, the world's most damaging insect pest in coffee, was significantly elevated on coffee shrubs from which birds were experimentally excluded from foraging. Overall, we estimated the economic value of the reduction of coffee berry borer by birds on the 18 ha farm to be US$310 ha,1 for the 2006 harvest season. These results provide additional evidence that birds can reduce numbers of economically damaging pests and enhance crop yields in coffee farms. Differences in the magnitude of pest reduction within the farm may have resulted from variation in shade management and surrounding habitats, and these factors merit further investigation. [source]


Bark beetles (Coleoptera: Curculionidae: Scolytinae) of importance to the Australian macadamia industry: an integrative taxonomic approach to species diagnostics

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2010
Andrew Mitchell
Abstract Bark beetles are emerging as pests of macadamias, both in the native range of macadamias in Australia and worldwide wherever macadamias are cultivated. Multiple species have been detected on macadamias in Australia; however, little has been known about the identity of the species involved, other than that some belong to the genera Hypothenemus Westwood (1836) and Cryphalus Erichson (1836). Hypothenemus is a large and cosmopolitan genus, which contains two exotic species that are regulated pests for Australia: the tropical nut borer, Hypothenemus obscurus (Fabricius), is a pest of macadamias and Brazil nuts in the Americas and the Pacific, and the coffee berry borer, Hypothenemus hampei (Ferrari), is a pest of coffee found in coffee-growing areas worldwide, but not in Australia. It is essential that biosecurity authorities have reliable species diagnostic tools available in order to detect incursions of these species in Australia. However, the taxonomic literature on the relevant species is scattered and sparse, and the lack of molecular diagnostic methods means that identification of eggs and larvae has been impossible to date because the immature life stages are morphologically homogeneous. This study fills some crucial gaps in our ability to identify these species, developing diagnostic methods for the major pest species on macadamia in Australia, and for key exotic species, including both regulated pests. An integrative taxonomic approach was used incorporating both traditional morphological taxonomy and DNA barcode data in an iterative process to both identify beetles and develop robust diagnostics for them. DNA barcodes provide unambiguous discrimination of all species examined in this study, albeit a limited sample, and have the advantage that they can be used to identify all life stages of the species. [source]


Twig-Nesting Ants: The Hidden Predators of the Coffee Berry Borer in Chiapas, Mexico

BIOTROPICA, Issue 3 2010
Ashley Larsen
ABSTRACT Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


Agroforestry management affects coffee pests contingent on season and developmental stage

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
A. Teodoro
Abstract 1,Management of vegetational diversity in agroecosystems is a potentially regulating factor of pest population dynamics and may affect developmental stages in different ways. 2,We investigated the population dynamics of red spider mites, coffee leaf miners, and coffee berry borers in three management types of coffee agroforests: increasing plant diversity from a few shade tree species (simple-shade agroforests), intermediate-shade tree species (complex-shade agroforests) to high-shade tree species (abandoned coffee agroforests) in Ecuador. Furthermore, we studied how changes in agroforestry management affect population stage structure of each coffee pest. 3,Our results show that agroforestry management affected seasonal patterns of coffee pests in that higher densities of red spider mites were observed from August to December, coffee leaf miners from December to February, and coffee berry borers from May to July. Moreover, specific developmental stages of red spider mites, coffee leaf miners, and coffee berry borers differed in their responses to agroforestry management. During all stages, red spider mite reached higher densities in simple-shade agroforests compared with complex-shade and abandoned agroforests. Meanwhile, coffee leaf miner densities decreased from simple-shade to complex-shade and abandoned agroforests, but only for larvae, not pupae. Similarly, only coffee berry borer adults (but not eggs, larvae and pupae) demonstrated a response to agroforestry management. Environmental variables characterizing each agroforestry type proved to be important drivers of pest population densities in the field. 4,We emphasize the importance of considering seasonal differences and population structure while investigating arthropod responses to different habitat types because responses change with time and developmental stages. [source]